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“The multiple must be made, not by always adding a higher dimension,

but rather in the simplest of ways, by dint of sobriety,

with the number of dimensions one already has available—

always n− 1 (the only way the one belongs to the multiple: always subtracted).

Subtract the unique from the multiplicity to be constituted; write at n− 1 dimensions.”

Gilles Deleuze - Mille Plateaux
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SUMMARY

The enclosed research is a focused empirical and theoretical analysis of the optimization

methods in machine learning, and the underlying role that the matrix rank of utilized

learning statistics plays in these algorithms. We show that this new perspective on ma-

chine learning optimization provides benefits in terms of communication-efficient federated

learning algorithms, as well as novel insights in terms of model introspection and theory of

learning dynamics. In applications to the complex domain of Neuroimaging data analysis,

we aim to show that this rank-focused frame of reference allows for unique insights into

how models perform on particular populations.

Chapter 1 provides a survey of literature with a focus on low-rank models in machine

learning and neuroimaging, as well as perspectives that rank have provided into the dynam-

ics of machine learning. Our unique perspective on low-rank learning from the standpoint

of PCA, ICA and subsequently Auto-Differentiation stand out from the literature in two pri-

mary ways: first, our methods for federated learning take an approach which emphasizes

communicating only the “most important” statistics (in the sense of maximally dominant

in the spectrum), while also starting from principled structure such as the low-rank as-

sumptions of ICA or the outer-product structure of AD; second, because our methods our

founded in low-rank structures at work in ubiquitous optimization techniques, we are given

a unique and intuitive theoretical perspective for analyzing the dynamics of these models

which has otherwise only come with otherwise limiting assumptions.

In chapters 2 and 3, we have shown that federated learning algorithms for Independent

Component Analysis (ICA) can be achieved in two ways. First, by making the assumption

that sources across sites share a common low-rank mixing matrix (allowing us to compute

a decentralized Joint ICA), we show that sites in a federated learning setup can use iterative

principal component analysis (PCA) to reduce decentralized data to the desired rank while

still preserving privacy of individual subjects. We have shown in subsequent work that this

same iterative PCA reduction allows for computation of a decentralized group ICA if each
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site performs a local Infomax ICA optimization after the distributed PCA procedure. We

apply both of these algorithms as distributed variants of standard algorithms for analyzing

neuroimaging data, demonstrating that the complex domain benefits from the low-rank

structure of the optimization.

Having explored two algorithms which emerge from low-rank assumptions on input

data, we encounter an intriguing question if such a structure may not only be applied to

data, but to the dynamics of complex machine learning models, such as Artificial Neural

Networks. In chapters 4, 5 and 6, we present work investigating the outer-product struc-

ture of the gradient in backpropagation optimization for artificial neural networks. Chapter

4 contains the text and empirical results on rank-efficient distributed auto-differentiation

(rank-dAD). In chapter 5 (submitted to Neurips 2023), we have found a number of theoret-

ical bounds on the rank of the gradient during training, and we have found that the effective

rank of the gradient changes dynamically during training, providing some fascinating in-

sights into the relationship between the learning of dominant modes in data sets and models

overfitting to noise. We show how these theoretical constraints lead to intuitive algorithms

for communication-efficient distributed auto-differentiation. Additionally we show theo-

retically how bounds on gradient rank can be derived for any nonlinear activation which is

piece-wise linear. Finally, in chapter 6 we show how our investigations into gradient rank

allow for a novel kind of model introspection by way of the singular value decomposition

of gradients computed dynamically during auto-differentiation. The unique perspective we

take from auto-differentiation allows us to uniquely compare group-specific dynamics in

the gradient rank and individual singular values. We show in this chapter how the method

can be applied in practice to both numerical and neuroimaging data sets.

Finally, chapter 7 provides a discussion of the overall body of the dissertation, and

focuses on a number of promising directions for future work. Beyond expansion of the

methods presented here to new and interesting data sets and architectures, we provide an

initial empirical demonstration of how general nonlinear functions can affect the spectra of
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low-rank matrices, providing empirical groundwork for a theoretical extension of the work

in chapter 5. Furthermore, we discuss how these insights may lead to significant runtime

improvements for the computationally-intensive introspection method from chapter 6.
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CHAPTER 1

LITERATURE SURVEY

In this section, we provide a brief review of the literature relevant to the work in this dis-

sertation. First, we provided a brief review of rank-based methods in Neuroimaging, with

the initial work of this dissertation standing apart from these works by exploiting their

low-rank structure to invent intuitive federated learning versions of these algorithms. Sub-

sequently, we provide a brief review of federated deep learning with a focus on one extant

methods which exploits rank to produce communication-efficient algorithms. Our method

for distributed auto-differentiation stands out from this work by exploiting an inherently

low-rank structure in deep learning optimization, rather than simply starting from random

projections. Finally, we provide a brief survey of theoretical work on deep learning opti-

mization. Our approach from distributed auto-differentiation fits well into state-of-the-art

research on deep learning dynamics, and it provides us with an intuitive theoretical ground

which does not require any assumptions on the structure of the feature space.

1.1 Rank-Based Methods in Neuroimaging

In scientific domains which deal with highly complex data, low-rank machine-learning

methods can play an important role in addressing data complexity, or providing results

which are more easily interpretable. In neuroimaging in particular, regardless of the modal-

ity acquired the number of voxels typically exceends the number of samples acquired for a

particular study, and thus suffers from the well-known problem of curse of dimensionality

[1]. The rationale behind complexity reduction in neuroimaging then is to select for fea-

tures which are most salient to a given problem setting, and can be achieved in a number

of different ways.
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1.1.1 Partial Least Squares

A number of supervised learning techniques have been used for reducing feature complex-

ity; however, the majority of these methods, such as elastic-net regularization or pearson-

correlation filtering, do not utilize a low-rank structure in their optimization (for a survey

of these methods see [2]). The exception to this are Partial Least Squares methods [3, 4],

such as Partial Least Squares Correlation (PLSC) [5] and Partial Least Squares Regression

(PLSR) [6], where the product of a set of predictor variables X and target variables Y is

computed as

M = Y ⊤X

. The singular value decomposition of M is then computed as

M = UΣV ⊤

, and the top k left and right eigenvectors in U and V are used to reduce select the most

salient input features (brain images) and target features (diagnosis or behavioral design

e.g.). PLSC and PLSR have been applied succesfully to a number of predictive tasks in

neuroimaging such as age classification, prediction of cognitive scores, and multimodal

feature-reduction.

1.1.2 Principal and Independent Component Analysis

Unsupervised feature reduction methods are also prevalent in neuroimaging, allowing re-

searchers to explore imaging features without being constrained to a particular behavioral

task, demographic variable, or other target. For example, resting state functional Mag-

netic Resonance Imagining (fMRI) can especially benefit from unsupervised data-driven

reduction, as it inherently involves no underlying design.

Principal component analysis (PCA) [7] is a popular method for unsupervised dimen-
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sion reduction, which computes the SVD of the covariance matrix of the input features,

and uses the top k eigenvectors (with k chosen by the user) to obtain a linear combination

of features capturing the most variance in the data. PCA has been utilized to extract rele-

vant principal components in neuroimaging studies in Schizophrenia [8, 9, 10], Alzheimers

[11], Major Depressive Disorder [12], and face recognition in MRI [13].

Independent Component Analysis (ICA) is a popular blind source separation (BSS)

method which attempts to decompose mixed signals into independent components (ICs),

or sources, without prior knowledge of the structure of those sources. Empirically, ICA ap-

plied to brain imaging data produces robust features which are physiologically interpretable

and markedly reproducible across studies [14, 15, 16, 17]. Indeed, while justification for

successful ICA of fMRI results had been previously attributed to sparsity alone [18], it has

been shown that statistical independence between the underlying sources is in fact a key

driving mechanism of ICA algorithms [19], with additional benefits possible by trading off

between the two [20].

In linear ICA, we model a data matrix X ∈ RM×N as a product X ≈ WS, where

S ∈ Rk×N is composed of N observations from k statistically independent components,

each representing an underlying signal source. Thus, we can interpret ICA in terms of

this generative model, with independent sources S submitted to a linear mixing process de-

scribed by a mixing matrix A ∈ RM×k, forming the observed data X . Most ICA algorithms

seek to recover the “unmixing matrix” Ŵ = A−1 (or in the case where A is not square,

the pseudo-inverse, A+), by maximizing independence between rows of the product WX ,

assuming the matrix A is invertible.

Maximal information transfer (Infomax) [21] is a popular heuristic for estimating W

by maximizing an entropy functional related to WX . Another class of algorithms includes

the famous family of fixed-point methods such as Fast ICA [22, 23, 24]. These locally

optimize a “contrast” function such as kurtosis or negentropy.

ICA, along with other methods for BSS, has found wide application. In particular,
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functional magnetic resonance imaging (fMRI) and other biomedical imaging data use ICA

models to interpret subject imaging data [16]. For fMRI, many models assume that func-

tionally connected regions in the brain are systematically nonoverlapping. ICA has been

used in applications ranging from interpreting physiology to analyzing task-related signals

in both the spatial and temporal domains.

Additionally, a number of extensions of ICA exist for the purpose of jointly analyzing

multiple data sets to perform a simultaneous decomposition across a large number number

of subjects and different modalities [25, 26, 27]. Group spatial ICA (GICA) stands out as

the leading approach for multi-subject analysis of task- and resting-state fMRI data [28],

building on the assumption that the spatial map components (S) are common (or at least

similar) across subjects. Another approach, called joint ICA (jICA) [29], is popular in the

field of multimodal data fusion and assumes instead that the mixing process (S) over a

group of subjects is common between a pair of data modalities.

1.1.3 Nonlinear Methods

PCA, ICA, and NMF are all ultimately linear methods, and any nonlinear interactions that

are modelled within data are thus not accounted for. Methods such as Nonlinear ICA [30,

31, 32] utilize nonlinear similarity metrics such as Mutual Information [33], or inherently

nonlinear models such as Neural Networks to estimate nonlinear interactions between sta-

tistically indepdendent components. More recently, variational auto-encoders [34], which

learn a set of latent variables to generate a probability distribution which contains input

data, have become especially popular for nonlinear representation learning of neuroimag-

ing data [35, 36, 37, 38], and multimodal fusion [39].

1.2 Federated Learning

Federated learning is a relatively new concept in the machine learning field, emerging from

an increased concern for the privacy of data in involved in training machine learning mod-
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els, as well as from a demand for increased statistical power in models from larger and more

complex data, which can be difficult to store in centralized locations. Although the term

was coined in 2016 papers from Google Research [40, 41], the practice existed in under the

name “decentralized” learning or privacy-sensitive learning in fields such as Neuroimaging

as early as 2014 [42, 43, 44], where the problem of data-sharing was especially relevant.

Although federated learning methods vary widely, the common feature between the

majority is that individually identifiable samples are kept at local data-collection sites, with

only intermediate statistics shared during training [44]. Additional privacy assurances can

then be applied to shared statistics [44, 45] such as differential privacy [46].

A number of federated learning methods have been invented for neuroimaging in par-

ticular [44, 47], such as distributed joint and group ICA [43, 48], which are presented

as part of this dissertation, distributed dynamic functional network connectivity (ddFNC)

[49], distributed independent vector analysis [50], distributed multi-layer perceptrons [51],

and distributed stochastic neighbor embeddings [52, 53].

1.2.1 Federated Deep Learning

Deep Learning models are notoriously data-hungry, easily succumbing to the curse of di-

mensionality and other issues when not enough samples are available. Federated learning

has thus exploded in interest with deep learning models in particular [54, 55, 56], including

a number of methods applied to healthcare [57].

Most relevant work in distributed deep learning focuses on gradients as the primary

shared statistic, and applies techniques such as dropping unnecessary values via sparsifi-

cation [58, 59, 60, 61, 62, 63, 64], mapping values into bins via quantization [65, 66, 67,

68, 69], or otherwise compressing gradients [70, 71, 72]. Although these methods focus

on gradients, the majority of them are applicable to any shared statistic which can be used

for learning. Since we focus on the more fundamental question of what statistics are being

shared, these methods are potentially synergistic with ours.
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A second class of distributed deep learning method reduces bandwidth by following

an update schedule, so gradients are not shared for every batch or epoch. These methods,

such as bursty aggregation [73], lazy aggregation [74], periodic averaging [75], and other

scheduling strategies [60, 76, 77], are again agnostic to the actual statistic shared—as long

as the statistic can be used for learning. With the exception of methods which average

statistics during training, the methods proposed here should be entirely compatible with

any update schedule desired, since the auto-differentiation statistics we share can be used

to reconstruct gradients at any point during training.

Recently, methods exploiting optimization algorithms such as auto-differentiation aim

to provide more general federated learning algorithms. We released a preprint in 2021

[78] along with three accepted workshop submissions which present our method for dis-

tributed auto-differentiation, exploiting the inherent low-rank outer-product structure. A

new preprint released by google [79] also claims to do federated auto-differentiation; how-

ever, their federation is relegated only to the sum operations at work in auto-differentiation.

1.2.2 Rank-Based Federated Deep Learning

Another class of federated deep learning follows approaches from rank-based decomposi-

tion. Methods like PowerSGD [80], uses a power iterations of local gradients to estimate

two low-rank matrices which can be used to reconstruct a low-rank approximation of the

gradient. Although PowerSGD is a gradient compression method on its face, the shar-

ing of low-rank Q and R matrices does represent a shift away from sharing raw gradients.

Indeed, for a chosen low rank r, PowerSGD is able to achieve a bandwidth per layer of

Θ(r(hi + hi+1)) for hidden layer sizes hi and hi+1. PowerSGD, which achieves a band-

width reduction via the path of QR decomposition rather than auto-differentiation, thus

represents a conceptually closest alternative to our method. It will be our goal in this work

to illustrate the benefits we receive by taking the path of auto-differentiation both in terms

of mathematical intuition, model performance, and bandwidth reduction.

6



As mentioned above, our method for distributed auto-differentiation [78] exploits the

low-rank structure of the gradient computed in deep learning models to allow for an effi-

cient federated learning algorithm.

1.3 The Role of Deep Learning Rank

In the preliminary work for this dissertation, we took an approach to federated learning

which exploited the rank of certain matrices involved in optimization in order to create ef-

ficient algorithms. In methods like ICA, the rank of the input is assumed by the researcher,

but in neural networks, the low rank of the gradient emerges naturally as an artifact of the

learning process. The theoretical contribution of our work provides a perspective into the

role of rank in training dynamics of artificial neural networks.

While Neural Networks have been widely and successfully applied to a number of prob-

lem settings, no comprehensive theory exists for describing training dynamics, explanations

of model inference, and other important insights. Andrew Saxe’s solutions to the differen-

tial equations which describe training and semantic learning in deep neural networks [81,

82] provides an intriguing first picture of how deep these networks learn. Indeed, the results

of Saxe’s work indicate that rank may play a pivotal role in these dynamics, as his work

shows dominant modes of input-output covariance learned in order during training. In a

separate body of work, Tishby et al. [83, 84] have described an information-theoretic inter-

pretation of deep learning (which has gained some criticism from Saxe [85]), in which deep

neural networks enter into the information-bottleneck paradigm, trading off the amount of

input and output information represented in the latent space. Although Tishby’s work is

also not explicitly related to rank, there may be connections via the information bottleneck

theory itself [86] even if some of Tishby’s findings are problematic.

A more directly relevant work analyzing the role of rank in deep learning training comes

from work on the so-called “Neural Collapse” phenomenon [87] in classification. Accord-

ing to the original 2020 work, several distinct characteristics of terminal training in deep
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neural networks were observed empirically: 1) loss of cross-example within class variable,

2) collapse of class means to a simplex, 3) last layer classifiers converge to a simplex, 4)

classifier decisions collapse to whichever class has the closest training mean. So far in the

literature, this phenomenon has primarily been analyzed theoretically via so-called “un-

constrained features” [88, 89, 90, 91, 92], where the features of a deep neural network are

treated as free optimization variables, allowing the underlying problem to be viewed as a

matrix factorization problem. More recent work has shown that Neural Collapse does not

need to make the assumption of unconstrained features, with neural collapse emerging nat-

urally in the dynamics of SGD with mean squared error loss [93]. Our theoretical work is

in the same class of this most recent work; however, our auto-differentiation first approach,

along with our analysis of linear networks, provides an intuitive picture of how rank plays

a unique role in neural collapse.

[obeyspaces]url

8



CHAPTER 2

DECENTRALIZED TEMPORAL INDEPENDENT COMPONENT ANALYSIS:

LEVERAGING FMRI DATA IN COLLABORATIVE SETTINGS

2.1 Introduction

The benefits of collaborative analysis on fMRI data are deep and far-reaching. Research

groups studying complex phenomena (such as mental disorders) often gather data with the

intent of performing specific kinds of analyses. However, researchers can often leverage the

data gathered to investigate questions beyond the scope of the original study. For example,

a study focusing on the role of functional connectivity in mental health patients may collect

a brain scan using magnetic resonance imaging (MRI) from all enrolled subjects, but may

only examine one particular aspect of the data. The scans gathered for the study, how-

ever, are often saved to form a data set associated with that study—they therefore remain

available for use in future research. This phenomenon often results in the accumulation of

vast amounts of data, distributed in a decentralized fashion across many research sites. In

addition, since technological advances have dramatically increased the complexity of data

per measurement while lowering their cost, researchers hope to leverage data across multi-

ple research groups to achieve sufficiently large sample sizes that may uncover important,

relevant, and interpretable features that characterize the underlying complex phenomenon.

The standard industry solution to data sharing involves each group uploading data to

a shared-use data center, such as a cloud-based service like the OpenfMRI data reposi-

tory [94] or the more-recently proposed OpenNeuro service [95]. Despite the prevalence

of such frameworks, centralized solutions may not be feasible for many research applica-

tions. For example, since neuroimaging uses data taken from human subjects, data sharing

may be limited or prohibited due to issues such as (i) local administrative rules, (ii) lo-
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cal desire to retain control over the data until a specific project has reached completion,

(iii) a desire to pool together a large external dataset with a local dataset without the com-

putational and storage cost of downloading all the data, or (iv) ethical concerns of data

re-identification. The last point is particularly acute in scenarios involving genetic infor-

mation, patient groups with rare diseases, and other identity-sensitive applications. Even if

steps are taken to assure patient privacy in centralized repositories, the repository maintain-

ers are often forced to deal with monumental tasks of centralized management and stan-

dardization. This can require many hours of additional processing, occasionally reducing

the richness of some of the contributed data [96].

In lieu of centralized sharing techniques, a number of practical decentralization ap-

proaches have recently been proposed by researchers looking to perform privatized analy-

ses. For example, the “enhancing neuroimaging genetics through meta analysis” (ENIGMA)

consortium [97] allows groups to share local summary statistics rather than gathering all

the original imaging data at a single site for a centralized analysis. This method has proven

very successful when using both mega- and meta-analysis approaches [97, 98, 99, 100].

Particularly, the meta-analysis at work in ENIGMA has been used for large-scale genetic

association studies, with each site performing the same analysis, the same brain measure

extraction, or the same regressions, and then aggregating local results globally. Meta-

analyses can summarize findings from tens of thousands of individuals, so the summaries

of aggregated local data need not be subject to institutional firewalls or even require addi-

tional consent from subjects [100, 101]. This approach represents one proven, widely used

method for enabling analyses on otherwise inaccessible data.

Although ENIGMA has spurred innovation through massive international collabora-

tions, there are some challenges which complicate the approach. Firstly, the meta-analyses

at work in ENIGMA are effectively executed manually: a very time-consuming process.

For each experiment, researchers have to write analysis scripts, coordinate with personnel

at all participating sites to make sure these scripts are implemented there, adapt and debug
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scripts at each site, and then gather the results through the use of proprietary software. In

addition, an analysis using the ENIGMA approach described above is typically “single-

shot,” i.e., it does not iterate among sites to compute results holistically, as informed by the

global data. From a statistical and machine learning perspective, single-shot model aver-

aging has asymptotic performance with respect to the number of subjects for some types

of analysis [102, 103]. However, simple model averaging does not account for variability

between sites driven by small sample sizes and cannot leverage multivariate dependence

structures that might exist across sites. Furthermore, the ability to iterate over local site

computations allows not only continuous refinement of the solution at the global level but

also greater algorithmic complexity, enabling multivariate approaches like group ICA [104]

and support vector machines [105], and increased efficiency due to parallelism, facilitating

the processing of images containing thousands of voxels.

These, together with the significant amount of manual labor required for single-shot ap-

proaches to decentralization, motivates decentralized analyses which favor more frequent

communication. For example, sites running a global optimization algorithm can commu-

nicate following each iteration or after a number of iterations. In this paper, we further

previous work in this direction [43] to develop iterative algorithms for collaborative, de-

centralized feature learning. Namely, we implement a real-data application of a successful

algorithm for decentralized independent component analysis (ICA), a widely-used method

in neuroimaging applications. Specifically, we show that our decentralized implementation

can help further advance the as-of-yet mostly unexplored domain of temporal ICA of func-

tional magnetic resonance imaging (fMRI) data. The resulting method is a ready fit for

decentralized collaboration frameworks, such as the COINSTAC neuro-imaging analysis

platform [105], which promises innovation in privacy-sensitive decentralized analysis.

Decentralized approaches such as ENIGMA allow research sites to maintain control

over data access, thus providing plausible privacy protection at the cost of additional labor

in implementing and updating a distributed architecture. For many applications, keeping
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data stored on sites without transfer of entire data samples may provide substantial privacy.

These decentralized methods, however, are amenable to quantifiable measures of privacy,

such as differential privacy [46]. In this work, we leave the addition of differential privacy

aside, and focus on the presentation of djICA as a separate algorithm first, with plausible

privacy; however, we have pursued the addition of differential privacy to djICA elsewhere

[106].

One widespread analysis which stands to benefit from decentralization is temporal in-

dependent component analysis (tICA). In resting-state fMRI studies, we can assume that

the overall spatial networks remain stable across subjects and experiment duration, while

the activation of certain neurological regions varies over time and across subjects. Tem-

poral ICA, first utilized for fMRI by Biswal et al. [17], locates temporally independent

components corresponding to independent activations of a subjects’ intrinsic common spa-

tial networks [107]. Both spatial and temporal ICA evidently provide reliable estimates of

these intrinsic networks from fMRI data [108, 109, 110, 111], but, unlike its spatial coun-

terpart, temporal ICA allows spatial correlation between them (i.e. overlaps in the spatial

maps) [112]. Spatial and temporal ICA can result in similar estimated networks [113, 108,

114, 109], while temporal ICA provides estimates not otherwise available to spatial ICA

[111, 115], specifically for task-related data. Temporal ICA has also proven particularly

useful for extracting information from high-resolution fMRI scans with overlapping spatial

activations, a feature not available to spatial ICA [116]. Beyond estimation of novel tem-

poral components, temporal ICA can also aid in isolating and removing noise from fMRI

signals [117, 118].

While useful, the existing literature for temporal ICA is limited. This can be partially

attributed to computational complexity and dependence on statistical sample size, since

temporal ICA requires more data points in the time dimension than the typical fMRI time

series can offer [108, 109]. Specifically, the ratio of the spatial to the temporal dimension

often requires the temporal dimension to be at least similar to the voxel dimension. This
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often motivates the temporal aggregation of datasets composed of many temporally con-

catenated subjects. This temporal aggregation is also a key feature of the well-established

group spatial ICA in the fMRI literature [119, 120, 14]. Beyond accumulation of sub-

jects, other studies implementing temporal ICA for fMRI utilize higher-resolution scans

to perform temporal ICA with fewer subjects [116]. Further methods reduce the spatial

dimension to make a temporal ICA tractable: Seifritz et al. [121] use an initial spatial ICA

to reduce spatial dimensional by locating a region of interest on which to perform tempo-

ral ICA, and Van et al. restrict the temporal analysis to a predetermined region of voxels

deemed relevant to their particular problem of speech pattern monitoring [122].

Although temporal ICA would benefit tremendously from increasing the temporal fre-

quency of scanners, or analyzing a large number of subjects at a central location, as men-

tioned above, this is not always feasible. To overcome the challenges of centralized tempo-

ral ICA, we present a novel method, decentralized joint Independent Component Analysis

(djICA), which allows for the computation of aggregate spatial maps and local independent

time courses across decentralized data stored at different servers belonging to indepen-

dent labs. Our approach combines individual computations performed locally with global

processes to obtain both local and global results. The resulting method for temporal ICA

produces results with similar performance to the pooled-data case and provides estimated

components in line with previous literature, demonstrating the effectiveness of decentral-

ized collaborative algorithms for this difficult task.

In sum, the contributions of this paper are as follows:

• In Section 2.2, we present decentralized joint independent component analysis (algo-

rithm 1, Section 2.2.2), which is closely related to Infomax ICA (Section 2.2.1) with

decentralized PCA preprocessing (Section 2.2.3).

• In Section 2.3 we include experiments and evaluation of djICA over different subject

and site distributions for simulated data sets, including simulated fMRI data, thus

providing a baseline result and proper motivation for real-data experiments.
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• In Section 2.4, we perform experiments which evaluate djICA on a real set of fMRI

data in a simulated decentralized environment, using a novel pseudo-ground-truth

evaluation scheme to compare our results with the pooled case.

• Finally, in Section 2.5, we discuss the performance of djICA as a novel method

for performing temporal ICA in decentralized settings, comparing our results with

previously estimated results from the pooled temporal ICA literature.

2.2 Materials and Methods

In this section, we provide the details of our method for decentralized joint independent

component analysis and provide a basis for its evaluation. We first review Independent

Component Analysis for the pooled case (where all samples are located on a single site) in

Section 2.2.1, which provides basis for our presentation of the djICA algorithm in section

2.2.2. In section 2.2.3 we discuss performing PCA preprocessing in a decentralized setting,

and finally, in section 2.2.4, we discuss our methods for evaluating the djICA algorithm.

The code used for evaluation is available on GitHub1, and its inclusion in the COINSTAC

decentralized analysis framework is currently ongoing.

2.2.1 Independent Component Analysis

ICA is a popular blind source separation (BSS) method which attempts to decompose

mixed signals into independent components (ICs), or sources, without prior knowledge

of the structure of those sources. Empirically, ICA applied to brain imaging data produces

robust features which are physiologically interpretable and markedly reproducible across

studies [14, 15, 16, 17]. Indeed, while justification for successful ICA of fMRI results

had been previously attributed to sparsity alone [18], it has been shown that statistical in-

dependence between the underlying sources is in fact a key driving mechanism of ICA

algorithms [19], with additional benefits possible by trading off between the two [20].

1https://github.com/MRN-Code/djica paper code release
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In linear ICA, we model a data matrix X ∈ Rd×N as a product X ≈ SA, where

A ∈ Rr×N is composed of N observations from r statistically independent components,

each representing an underlying signal source. Thus, we can interpret ICA in terms of this

generative model, with independent sources A submitted to a linear mixing process de-

scribed by a mixing matrix S ∈ Rd×r, forming the observed data X. Most ICA algorithms

seek to recover the “unmixing matrix” W = S−1 (or in the case where S is not square,

the pseudo-inverse, S+), by maximizing independence between rows of the product WX,

assuming the matrix S is invertible.

Maximal information transfer (Infomax) [21] is a popular heuristic for estimating W

by maximizing an entropy functional related to WX. This can alternatively be interpreted

as a Bayesian estimator with a super-Gaussian prior on the density of the sources. More

precisely, with some abuse of notation, let

g(z) =
1

1 + e−z
(2.1)

be the sigmoid function with g(Z) being the result of element-wise application of g(·) on

the entries of a matrix or vector Z. The differential entropy of a random vector Z with joint

density p is

h(Z) = −
∫

p(Z) log p(Z)dZ. (2.2)

The objective of Infomax ICA then becomes

Ŵ = argmax
W

h(g(WX)). (2.3)

Another class of algorithms includes the famous family of fixed-point methods such

as Fast ICA [22, 23, 24]. These locally optimize a “contrast” function such as kurtosis or

negentropy.

15



ICA, along with other methods for BSS, has found wide application. In particular,

functional magnetic resonance imaging (fMRI) and other biomedical imaging data use ICA

models to interpret subject imaging data [16]. For fMRI, many models assume that func-

tionally connected regions in the brain are systematically nonoverlapping. ICA has been

used in applications ranging from interpreting physiology to analyzing task-related signals

in both the spatial and temporal domains.

Additionally, a number of extensions of ICA exist for the purpose of jointly analyzing

multiple data sets to perform a simultaneous decomposition across a large number number

of subjects and different modalities [25, 26, 27]. Group spatial ICA (GICA) stands out as

the leading approach for multi-subject analysis of task- and resting-state fMRI data [28],

building on the assumption that the spatial map components (A) are common (or at least

similar) across subjects. Another approach, called joint ICA (jICA) [29], is popular in the

field of multimodal data fusion and assumes instead that the mixing process (S) over a

group of subjects is common between a pair of data modalities.

A largely unexplored area of fMRI research is group temporal ICA, which, like spatial

ICA, assumes common spatial maps but with statistically independent timecourses. Group

temporal ICA has been most commonly applied to EEG data [123] but less frequently to

fMRI data. Consequently, like jICA, in the fMRI case, the common spatial maps from tem-

poral ICA describe a common mixing process (S) among subjects. However, temporal ICA

of fMRI is not typically investigated because the small number of time points in each data

set can lead to unreliable estimates. Our decentralized jICA (djICA) approach overcomes

that limitation by leveraging information from data sets distributed over multiple sites. This

is an important extension of single-subject temporal ICA and a further example of methods

which can benefit from leveraging data in collaborative settings.
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Figure 2.1: Figure reprinted with permission. An overview of the djICA pipeline. Each
panel in the flowchart represents one stage in the pipeline and provides an overview of the
processes done on local sites and on the aggregator site, as well as communication between
nodes. The dPCA panel corresponds to Algorithms 2 and 3, the djICA panel corresponds
to Algorithm 1, and the Source Estimation panel corresponds to the procedure for comput-
ing local sources given in equation (2.5). On each panel, local site i is an arbitrary site in
the decentralized network, and local site i + 1 represents the next site in a given ordering
over the decentralized network. Broadcast communication sends data to all sites, and Send
communication sends data to one site. Lines with an arrowhead indicate procedural flow.
Lines with diamond endpoints indicate communication flow. Dotted lines with diamond
endpoints indicate that the sending process occurs iteratively to neighbors until the aggre-
gator is reached, or in the case of broadcasting, indicates that all nodes receive the latest
update. Double-lines indicate site-specific computations.

2.2.2 Decentralized Joint ICA

Our goal in this paper is to show that the decentralized joint ICA algorithm can be applied

to decentralized fMRI data and produce meaningful results for temporal ICA. We present

djICA in detail here and provide notation in table.

For an integer n let [n] = {1, 2, . . . , n}. Suppose that we have s total sites indexed by
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Table 2.1: Figure reprinted with permission. A summary of important notation used
throughout this paper, especially in Algorithms 1, 2, and 3.

X A S UΣV
Data Matrix Source Matrix Mixing Matrix SVD results
Xi Xi,red Ui Gi(j)
Data Site i Reduced Data Site i Eigenvectors Site i Gradient Site i

∆W(j) W(j) b(j) (j)
Weight Update Weight Matrix Bias iter j
s r d N
# sites rank (# ICs) # rows # cols
ρ wmax θmax α
learning rate max weight max angle anneal rate

[s]; each site i ∈ [s] has a data matrix Xi ∈ Rd×Ni consisting of a total time course of

length Ni time points over d voxels. Let N =
∑s

i=1 Ni be the total length. We model the

data at each site as coming from a common (global) mixing matrix S ∈ Rd×r applied to

local data sources Ai ∈ Rr×Ni . Thus, the total model can be written as

X = [SA1 SA2 · · · SAs] ∈ Rd×N. (2.4)

Our algorithm, decentralized joint ICA (djICA), uses locally computed gradients to esti-

mate a common, global unmixing matrix W ∈ Rr×d corresponding to the Moore-Penrose

pseudo-inverse of S in (2.4), denoted S+.

Figure 2.1 summarizes the overall algorithm in the context of temporal ICA for fMRI

data. Each site i has data matrices Xi,m ∈ Rd×ni corresponding to subjects m ∈ [Mi] with

d voxels and ni time samples. Sites concatenate their local data matrices temporally to

form a d× niMi data matrix Xi, so the total time course length at site i is Ni = niMi, and

the total number of subjects is M =
∑s

i=1Mi. Each site performs local PCA (Algorithm

2) using the singular value decomposition (SVD), with matrices Ui ∈ Rd×k and Σi ∈

Rk×k corresponding to the top k singular vectors and values, respectively. Then, in a

decentralized principal component analysis (dPCA) framework, the sites approximate a
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global PCA (Algorithm 3) to form a common r-dimensional projection matrix U ∈ Rd×r.

This approach is an adaptation of the sub-sampled time PCA (STP) method [124] to the

case of decentralized data, offering an accurate bandwidth-efficient alternative to other

dPCA algorithms [125] which can compute the global U directly (without local PCA)

but at the expense of communicating a large d × d matrix between sites. Finally, all sites

project their data onto the subspace corresponding to U to obtain reduced local datasets

Xi,red ∈ Rr×Ni .

The projected data is the input to the iterative djICA algorithm that estimates the un-

mixing matrix W ∈ Rr×r, as described in Algorithm 1. The full mixing matrix for the

global data is modeled as S ≈ (WU⊤)+ ∈ Rd×r. After initializing W (for example, as

the identity matrix), the djICA algorithm iteratively updates W using a distributed natural

gradient descent procedure [126]. At each iteration j the sites update locally. In lines 5

and 6, the sites adjust the local source estimates Zi = WXi,red by their bias estimates

b(j − 1)1⊤ ∈ Rr×Ni , followed by the sigmoid transformation g(·); then, local gradients

are computed with respect to Wi and bi in lines 7 and 8. Here, yl,i(j) is the l-th column of

Yi(j). The sites then send their local gradient estimates Gi(j) and hi(j) to an aggregator

site, which aggregates them according to lines 11-13. After updating W(j) and b(j), the

aggregator checks if any values in W(j) increased above an upper bound of wmax = 109

in absolute value. If so, the aggregator resets the global unmixing matrix, sets the current

iteration to j = 0, and anneals the learning rate by ρ = 0.9ρ. Otherwise, before continuing,

if the angle between ∆W(j) and ∆W(j − 1) is above θmax = 60◦, the aggregator anneals

the learning rate by ρ = 0.9ρ, preventing W from changing too quickly without learning

the structure of data. The aggregator sends the updated W(j) and b(j) back to the sites.

Finally, the algorithm stops when ∥∆W(j)∥22 < t, and each site recovers the statistically

independent source estimates Ai by

Ai ≈ WXi,red. (2.5)
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Algorithm 1 Figure reprinted with permission. decentralized joint ICA (djICA)

Require: data {Xi,red ∈ Rr×Ni:i∈[s]}, where r is the same across sites, tolerance level
t = 10−6, j = 0, maximum iterations J = 1024, initial learning rate ρ = 0.015/ ln(r),
maximum weight entry wmax = 109 , maximum angle θmax = 60◦, annealing rate
α = 0.9

1: Initialize W(0) ∈ Rr×r ▷ for example, W(0) = I
2: for j < J and ∥∆W(j)∥22 ≥ t do
3: j = j + 1
4: for all sites i = 1, 2, . . . , s do
5: Zi(j) = W(j − 1)Xi,red + b(j − 1)1⊤

6: Yi(j) = g(Zi(j))
7: Gi(j) = ρ

(
I+ (1− 2Yi(j))Zi(j)

⊤)W(j − 1)

8: hi(j) = ρ
∑Ni

l=1(1− 2yl,i(j))
9: Send Gi(j) and hi(j) to the aggregator site.

10: end for
At the aggregator site, update global variables

11: ∆W(j) =
∑s

i=1 Gi(j)
12: W(j) = W(j − 1) + ∆W(j)
13: b(j) = b(j − 1) +

∑s
i=1 hi(j)

Check Upper-Bound Conditions
14: if wi,j ∈ W, |wi,j| > wmax then ▷W has blown-up
15: Re-Initialize W(0), j = 0, ρ = αρ
16: else if ∠ (∆W(j),∆W(j − 1)) > θmax then
17: ρ = αρ ▷ Prevent W from changing too quickly
18: end if
19: Broadcast global W(j) and b(j) to all sites.
20: end for

For the pooled-data case, Amari et al. [127] demonstrate theoretically that Infomax ICA

meets with the conditions that guarantee convergence of W to an asymptotically stable

solution as long as A−1 is also asymptotically stable. In other words, the natural gradient

provides convergence to an equilibrium point corresponding to a local minimum; however,

in the general case for Infomax ICA, it is unfortunately not possible to assure convergence

to a global minimum, i.e. complete separation of the source signals.

In the decentralized-data case, djICA converges to the solution of the pooled-data case:

the assumption of a common mixing matrix across subjects assures that the global gradient

sum is identical to the pooled-data gradient on average, likewise moving the global weight

matrix towards convergence.
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Table 2.2: Figure reprinted with permission. A summary of the hyper-parameters used in
all experiments, for both simulations, and real-data scenarios.

param. t J ρ wmax θmax α
value 10−6 1024 0.015/ln(r) 109 60◦ 0.9

Indeed, since the global iterates of djICA are taken as the average of the individually

computed, on-site gradients, djICA run on a full-batch case (where each site has access to

the full batch of data) is equivalent to the pooled version of infomax ICA. We show this

empirically in section 1 of the supplementary material included with this work.

For our purposes, we chose the hyper-parameter values as specified in the “Required”

parameters for Algorithm 1, and we utilized the stochastic version of the algorithm with

block size b =
⌊√

min(Ni)
20

⌋
, where min(Ni) is the minimum number of concatenated time-

points across all sites. We summarize these parameters in Table 2.2.

2.2.3 PCA preprocessing

Here, we describe the decentralized principal component analysis (dPCA) algorithms used

for dimension reduction and whitening in the djICA pipeline. The dPCA algorithm is a pre-

processing step that standardizes the data prior to djICA and should also be decentralized

so that the benefits of using a decentralized joint ICA are not made moot by dependence on

a previous pooled step. There are many approaches to approximating the global PCA with

a distributed algorithm [128].

We first chose to examine dPCA from Bai et al. [125]. Their proposed dPCA algorithm

bypasses local data reduction, and thus works directly with the full data, which motivates

its choice for some of our simulated experiments. One major downside of their approach,

however, is that it requires the transfer of a large orthogonal matrix between all sites, thus

increasing bandwidth usage significantly. As an alternative to the approach presented by

Bai et al., a two-step dPCA approach was considered based on the STP approach [129]

recently developed for large PCA of multi-subject fMRI data. One advantage of this ap-

proach is that only a small matrix P ∈ Rd×k is transmitted from one site to another, a
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significant decrease compared to the large d × d matrix [125]. The downside is that there

are no bounds on the accuracy of the final U and results can vary slightly with the order in

which sites and subjects are processed. Nonetheless, our results suggest that the two-step

dPCA approach, described in Algorithms 2 and 3, yields a fairly good estimate of U. In

principle, any suitable decentralized PCA algorithm could replace the two methods tested

here. Thus, we leave room for future improvements of our framework to find the most

effective dPCA approach for the djICA pipeline.

Algorithm 2 Figure reprinted with permission. Local PCA algorithm (LocalPCA)

Require: data X ∈ Rd×N and intended rank k
1: Compute the SVD X = UΣV.
2: Let Σ(k) ∈ Rk×k contain the largest k singular values and U(k) ∈ Rd×k the corre-

sponding singular vectors.
3: Save U(k) and Σ(k) locally and return P = U(k)Σ(k).

Algorithm 3 Figure reprinted with permission. Global PCA algorithm (GlobalPCA)

Require: s sites with data {Xi ∈ Rd×Ni:i=1,2,...,s}, intended final rank r, local rank k ≥ r.
1: Choose a random order π for the sites.
2: P(1) = LocalPCA(Xπ(1),min{k, rank(Xπ(1))})
3: for all j = 2, 3, . . . , s do
4: Set site index i = π(j)
5: Send P(j − 1) from site π(j − 1) to site π(j)
6: k′ = min{k, rank(Xi)}
7: P′ = LocalPCA(Xi, k

′)
8: k′ = max{k′, rank(P(j − 1))}
9: P(j) = LocalPCA([P′ P(j − 1)], k′)

10: end for
11: r′ = min{r, rank(P(s))}
12: U = NORMALIZETOPCOLUMNS(P(s),r′) ▷ At last site
13: Send U to sites π(1), . . . , π(s− 1).
14: for all sites i = 1, 2, . . . , s do
15: Xi,red = U⊤Xi ▷ The locally reduced data
16: end for

Algorithm 3 uses a peer-to-peer scheme to iteratively refine P(j), with the last site

broadcasting the final U to all sites. U is the matrix containing the top r′ columns of P(s)

with largest L2-norm, but normalized to unit L2-norm instead. Following the recommen-
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dation in Calhoun et al. [129], we set r = 20 and k = 5 · r for our simulations.

2.2.4 Evaluation Strategy

All of our experiments were run using the MATLAB 2007b parallel computation tool-

box, on a Linux Server running Ubuntu 12.04 LTS, with a 9.6GHz processor (four Intel

Xeon E7-4870 @ 2.40GHz each), a 120MB L3 cache (30MB L3 cache per processor), and

512GB of RAM. For any one experiment, we only used a maximum of 8 cores, due to a

need to share the server with other researchers.

As a performance metric for our experiments we choose the Moreau-Amari [126] inter-

symbol interference (ISI):

ISI(Q) =
1

2r(r − 1)

[
r∑

i=1

( r∑
j=1

|Qij|
maxk|Qik|

− 1

)

+
r∑

j=1

( r∑
i=1

|Qij|
maxk|Qkj|

− 1

)]
.

(2.6)

This is a function of the square matrix Q = ŴS, where Ŵ = WU⊤, W is the estimated

unmixing matrix from Algorithm 1, U is the orthonormal projection matrix retrieved from

dPCA, and r = rank(Q), i.e. the number of sources. In particular, a lower ISI measure

indicates a better estimation of a set of ground-truth components.

2.3 Experiments with Simulated Data

First, we test djICA in a simulated environment where we can manufacture a known ground-

truth and use djICA to reconstruct this ground-truth under different mixing and site config-

urations. For this simulated case, we explicitly construct the signal matrices, A, and the

mixing matrix S (using the methods described in section 2.3), such that the source matrices

are statistically independent and provide, thus providing the assurance that a solution to

underyling BSS problem exists. If djICA performs well in this simulated case, where a
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solution is given, we can thus justify further experiments with real data, where a solution

to the underlying BSS problem is not readiily available. To this end, we evaluated 5 dif-

ferent scenarios for synthesis and analysis of synthetic data, as summarized in Table 2.3.

Based on what we have learned from these various scenarios, which include different PCA

preprocessing strategies, we can construct a promising pipeline for djICAwhich can then

be translated to the real data case.

Two kinds of mixing matrices S were used for experimentation:

1. Lower dimensional square mixing matrices were generated using MATLAB’s randn

function [130], which generates matrices whose elements are selected from an i.i.d. Gaus-

sian distribution.

2. Higher dimensional mixing matrices were generated using the MIALab’s fMRI sim-

ulation toolbox (simTB) [131]. The simTB spatial maps are intended to simulate

spatial components of the brain which contribute to the generation of the simulated

time course. Higher dimensional mixtures were masked using a simple circular mask

which drops empty voxels outside of the generated spatial map.

For the first two scenarios indicated in Table 2.3, we generated i.i.d. Gaussian mixing ma-

trices S ∈ Rr×r. For the higher-dimensional problems (scenarios 3-5), we used the simTB

spatial maps [131] to generate different S ∈ Rd×r mixing matrices.

The independent signals Am were simulated using a generalized autoregressive (AR)

conditional heteroscedastic (GARCH) model [132, 133], which has been shown to be use-

ful in models of causal source separation [134] and time-series analyses of data from neu-

roscience experiments [134, 135], especially resting-state fMRI time courses [136, 137].

We simulated fMRI time courses using a GARCH model by generating an AR process (no

moving average terms) randomly such that the AR series converges. We chose a random

order between 1 and 10 and random AR coefficients {α[ℓ]} such that α[0] ∈ [0.55, 0.8] and

α[ℓ] ∈ [−0.35, 0.35] for ℓ > 0. For the error terms δt = σtϵt, we used an ARMA model
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driven by ϵt from a generalized normal distribution with shape parameter 100 (so it was

approximately uniform on [−1, 1]) and σ2
t = 0.1 + 0.1y[t− 1]2 + 0.75σ[t− 1]2. For each

of 1024 simulated subjects, we generated 20 time courses with 250 time points, each after

a “burn-in” period of 20000 samples, checking that all pair-wise correlations between the

20 time courses stayed below 0.35. We generated a total of 1024 mixed datasets for each

experiment by computing Xm = SAm.

In summary, we considered the following combinations of algorithm, preprocessing,

and mixing matrix: 1) pooled (centralized) temporal ICA with no preprocessing (no data

reduction) and a square i.i.d Gaussian mixing-matrix, 2) djICA with no preprocessing and a

square i.i.d. Gaussian mixing-matrix, 3) pooled temporal ICA with LocalPCA preprocess-

ing (Algorithm 2) and a simTB mixing matrix, 4) djICA with dPCA from Bai et al. [125]

and a simTB mixing matrix, and 5) djICA with GlobalPCA (Algorithm 3) and a simTB

mixing matrix.

Table 2.3: Figure reprinted with permission. Five scenarios considered for synthesis and
analysis of simulated data experiments.

scenario algorithm preprocessing mixing matrix S
1 ICA (pooled) none i.i.d. Gaussian
2 djICA none i.i.d. Gaussian
3 ICA (pooled) LocalPCA simTB map
4 djICA One-Step dPCA [125] simTB map
5 djICA GlobalPCA simTB map

2.3.1 Simulation Results

In this section, the results for simulated experiments are presented. We are particularly

interested in understanding how the proposed algorithm performs with different kinds of

preprocessing, and how the results improve as a function of the global number of subjects,

the global number of sites, or how the subjects are distributed over sites.

To test how the algorithms compare as we increase the data at a fixed number of sites,

we fixed s = 2 sites and evaluated all five scenarios in Table 2.3, splitting the data evenly

per site in the non-pooled cases. Figure 2.2a shows ISI versus the total data set size. As
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the data set increases all algorithms improve and, more importantly, the distributed ver-

sions perform nearly as well as the pooled-data counterparts. Results are averaged over 10

randomly generated mixing matrices.

To test how the algorithms compare as we increase the number of sites s, we fix

Mi = 32 subjects per site. Figure 2.2b demonstrates the convergence of the ISI curve

with an increasing amount of combined data, with results averaged over 10 randomly gen-

erated mixing matrices. Again, we see that the performance of djICA is very close to the

centralized pooled performance, even for such a small number of subjects per site.
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Figure 2.2: Figure reprinted with permission. The ISI for pooled and decentralized algo-
rithms for different distributions of subjects over sites under the five simulated scenarios
indicated in Table 2.3. Panel 2.2a illustrates an increasing number of subjects over two,
fixed sites. Panel 2.2b illustrates an increasing number of sites, with the number of subjects
per site staying constant at 32 subjects per site, with the number of sites starting at 2 and
increasing by a factor of two. Panel 2.2c illustrates 1024 total subjects distributed over an
increasing number of sites. Panel 2.2d shows the 20 Ground-Truth spatial-maps, along with
the estimated spatial-maps from Pooled ICA and djICA with 1024 subjects on 2 sites. In
the cases with no PCA (panels 2.2a-2.2c), the pooled and decentralized algorithms perform
identically.

To test how splitting the data sets across more sites affects performance, we fixed the

total of 1024 subjects and investigated the effect of splitting them over a growing number

of sites s. Thus, the concentration of data per site Mi decreased with increasing number

of sites such that for small s each site had more data sets and for large s each site had

fewer data sets. Figure 2.2c shows that the performance of djICA is very close to that of
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the pooled-data ICA, even with more and more sites holding fewer and fewer data points.

This implies that we can support largely decentralized data with little loss in performance.

2.4 Experiments with Real Data

The simulated experiments illustrate the clear benefit djICA provides by enabling the joint

analysis of large decentralized data sets. In this section, we describe the methods utilized

for real-data experiments with resting-state fMRI datasets. These experiments are intended

to illustrate the effectiveness of djICA (Algorithm 1) in the particular domain of exploratory

analysis of fMRI data. As mentioned earlier, the benefits of using this algorithm for fMRI

analysis are numerous, and the experiments here aim to both highlight those benefits and

illustrate the robustness of the algorithm when compared to pooled analyses.

2.4.1 Data Description

In this section, we describe the data sets used for real data analysis. The purpose here is to

describe the preprocessing steps specific to the data utilized here. Experiments used data

gathered on-site, according to the protocol in [28]. The data were collected using a 3-Tesla

Siemens Trio scanner with a 12-channel radio frequency coil. T2*-weighted functional

images were acquired using a gradient-echo EPI sequence with TE = 29 ms, TR = 2 s,

flip angle = 75◦, slice thickness = 3.5 mm, slice gap = 1.05 mm, field of view 240 mm,

matrix size = 64×64, voxel size = 3.75 mm × 3.75 mm × 4.55 mm. In terms of duration,

resting-state scans were a minimum of 2 min 8 s (64 volumes) long, on average 5 min 16

s (158 volumes) long, and at maximum 10 min 2 s (301 volumnes) long (see Table 2.4).

In contrast to [28], subjects with greater number of time-points were retained in order to

illustrate the general robustness of djICA to variation in the time-course length.

In terms of preprocessing, the data underwent rigid body alignment for head motion,

slice-timing correction, spatial normalization to MNI space (using SPM5), regression of 6

motion parameters and their derivatives in addition to any trends (up to cubic or quintic),
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and spatial smoothing using a 10 mm3 full-width at half-maximum (FWHM) Gaussian

kernel.

Table 2.4: Figure reprinted with permission. Statistics on the number of timepoints in the
data set.

min mean mode median max range std
64 158 158 158 301 237 9

We also used the minimum description length (MDL) criterion [138] to estimate the

number of independent components for each individual subject with the algorithm available

in the MIALab’s Group ICA of fMRI toolbox (GIFT) [139, 140, 104]. experiment. The

median number of components over 2038 subjects was 50, and the mean was 49.4636. In

all experiments, we thus elected to estimate r = 50 real components from the data.

2.4.2 Real Data with “Real” Ground-Truth

Our ultimate goal is to show that djICA can provide reasonable decentralized estimates for

real fMRI components which are comparable to the pooled case. Thus, we first perform a

pooled analysis in order to establish a “pseudo” ground-truth that can be used to evaluate

djICA’s performance on real component estimation. We estimated r = 50 real independent

components from M = 2038 subjects by running a pooled instance of temporal ICA on

a single site. The performance of djICA was assessed by matching the estimated decen-

tralized components to the pooled components via the Hungarian algorithm [141] and then

computing the ISI between the two sets of components. For PCA preprocessing, to avoid

high communication costs, we elect to test only the GlobalPCA method given in algorithm

3.

Using the pooled estimations as our basis for comparison, we then tested djICA in four

distinct scenarios, varying the distribution of subjects across a network as follows:

1. when the global number of subjects in the network increases, but the number of sites

in the network stays constant,
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2. when the number of subjects per site stays constant, and the number of sites in the

network increases,

3. when the global number of subjects in the network stays constant, but the number of

sites in the network increases (subjects distributed evenly across sites), and

4. when the global number of subjects in the network stays constant, and subjects are

randomly distributed across sites.
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Figure 2.3: Figure reprinted with permission. The estimated ISI for real-data djICA over
different distributions of subjects over sites. Panel 2.3a illustrates an increasing number
of subjects over two fixed sites. Panel 2.3b illustrates an increasing number of sites, with
the number of subjects per site staying constant. Panel 2.3c illustrates 1024 global sub-
jects distributed over an increasing number of sites. Panel 2.3d shows three of the spatial
maps from djICA with over 2016 subjects evenly split over 16 sites, the pooled temporal
ICA “pseudo ground-truth” with 2038 subjects, and the corresponding temporal fluctuation
modes (TFM) from Smith et al. [111].

For the first three scenarios, we cap the maximum number of subjects in the network at

1024 so that we can achieve an even distribution of subjects in terms of powers of 2, and

so that the figures compare more directly with the simulated experiments. Furthermore,

in order to get a more detailed picture of the effects of small numbers of subjects per

site, we also evaluate djICA in the third scenario with a higher global number of subjects

(M = 2000), and closely examine the results in Figure 2.4. For each of these scenarios,
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we performed 10 repeated estimations of djICA components, where each run randomly

assigned subjects to different sites (without duplication of subjects).

For the fourth and last scenario, 2000 subjects were randomly distributed across sites.

Firstly, we selected a parametric probability distribution P (Θ) with parameters Θ. We then

sampled 100 different values from P , where each value corresponds with a potential num-

ber of subjects on the i-th site (Mi). We discarded any values below 4, so that each site has

a minimum of 4 subjects per site, and took the ceiling of each real value so that site distri-

butions are given as natural numbers. We then selected the first s− 1 values, with s being

the number of sites, such that
∑s−1

i=1 Mi < M , where M is the global number of subjects

in the network. For the final site, we set Ms = M −
∑s−1

i=1 Mi so that the total number of

subjects in the network will remain constant at M . This process results in a varying num-

ber of sites between successive samplings, which we found more appealing for testing as

opposed to a randomization method that would distribute a fixed number of subjects across

a fixed number of sites. We also considered the effect of different distribution parameter

values (Θ) to assess the performance of djICA.

2.4.3 “Real” Ground-Truth Results

In this section, we present the results of djICA on the four experiments described above.

In all cases, djICA is compared with a pooled case involving M = 2038 subjects, com-

paring across conditions using the Moreau-Amari ISI index as we did in the simulated

experiments, now treating the pooled case as a our real-data “ground-truth”.

How do the estimated components compare as we increase the data, with a fixed number

of sites?

In 2.3a, we evaluate the ISI index for djICA using real-data in a scenario where the global

number of subjects increases, but the number of sites in the network is fixed. This fig-

ure illustrates that as the number of subjects increases, the estimated djICA components

30



converge towards the components computed in the pooled case.

How do the estimated components compare as we increase the number of sites, with a fixed

amount of data sets per site?

In 2.3b, we evaluate the ISI index for djICA using real-data in a scenario where the number

of subjects on each site is held constant, while the number of sites in the network increases.

This figure further illustrates that as the global number of subjects increases, the estimated

djICA components converge towards the components computed in the pooled case. Indeed,

1024 global subjects was sufficient for good performance across the smaller network.

How does spreading the data sets across more sites affect performance?

In 2.3c, we evaluate the ISI index for djICA using real data in a scenario where the global

number of subjects across the entire network is held constant, while the number of sites

in the network increases. This figure illustrates that it is the global number of subjects

included in the analysis, rather than the number of subjects per site, that mostly affects

the performance of djICA. The concentration of subjects per site only begins to affect the

performance of djICA when it is very low. At four subjects per site (256 sites in panel

2.3c), the performance is slightly worse than in previous runs. Thus, in 2.4, we provide

more detailed results for the particular scenario using 2000 subjects in order to illustrate

the effects of low number of subjects per site.

The three cases A, B, and C in 2.4 illustrate the performance of the algorithm for the

minimum, median and maximum inter-symbol interference (ISI) scenarios respectively on

an increasing number of sites, from 10 repeated runs for each subject-site distribution.

Each run randomly placed different subjects on different sites. For all three cases, the

plot to the left illustrates the correlations of each pooled ICA component with their corre-

sponding match in each decomposition. It is evident from these plots that the correlation

values for the majority of the 50 components clustered tightly above the mean correlation
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Figure 2.4: Figure reprinted with permission. Keeping the number of subjects fixed at 2000
and increasing the number of sites, we examine the correlations of the estimated compo-
nents from djICA with the corresponding best match component from the pooled ICA
case. The plots to the left illustrate the correlations between pooled ICA components and
their best matched djICA components, from runs with the minimum (Case A, best), median
(Case B), and maximum (Case C, worst) ISI selected out of 10 total runs. On the box-plots,
the black horizontal bar represents the mean value of the Fisher-transformed correlations
(z-space) for a specific decomposition transformed back to correlation space (r-space), the
yellow shaded areas give the 95% confidence intervals of the Fisher-transformed correla-
tions (z-space) transformed back to r-space, and the red box boundaries show the sample
standard deviation over the Fisher-transformed correlations (z-space) transformed back to
r-space. The panels to the right are a component-specific depiction of the similarity between
the estimated djICA components and their corresponding pooled ICA component. Lighter
colors indicate that the estimated component highly resembled the pooled ICA component
estimated from 2038 subjects. The components (columns) are arranged in descending or-
der of correlations for the minimum ISI case, and this sorting order was retained for the
median and maximum ISI cases.

values (black horizontal bar) for the entire range of number of sites, thus suggesting that

the mean correlation values for all cases were driven to a lower value by a few outliers

(poorly replicated components). In fact, the lowest mean for the worst ISI case was 0.83 (s

= 1000). However, in general, the mean value of the component correlations for any given

case decreased with an increase in number of sites.

A one-way analysis of variance (ANOVA) and multiple comparison of means tests
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were used to determine the specific cases in which the mean Fisher-transformed correlation

estimates (z-space) were significantly different (at a corrected significance level of 5%

using Tukey’s honest significant difference (HSD) method). For the minimum ISI case,

significant differences were observed in the first five decompositions (s = 4, 10, 25, 50, and

125) as compared to the last decomposition (s = 1000), the first two decompositions (s = 4

and 10) as compared to the second-to-last (s = 500), and the first decomposition (s = 4) as

compared to the fourth, fifth and sixth (s = 50, 125 and 250). The median ISI case showed

an almost identical set of differences, except for one less significant difference between the

first four decompositions (s = 4, 10, 25 and 50) as compared to the last decomposition (s

= 1000). Finally, for the maximum ISI case, the first four decompositions (s = 4, 10, 25

and 50) had mean correlation estimates significantly different than the last two (s = 500

and 1000), and the first decomposition (s = 4) showed additional significant differences as

compared to the fifth and sixth (s = 125 and 250). This overall pattern clearly indicates: (1)

deterioration of performance with lower number of subjects per site; (2) significantly lower

mean correlations for very low number of subjects per site (8 at s = 250, 4 at s = 500, and

2 at s = 1000).

For all cases A, B, and C, the component-specific performance of the algorithm can

be traced in the correlation intensity images to the right. It is evident that all three cases

feature high correlations for most of the components, especially in decompositions with

lower number of sites. However, there are a few components that exhibit poor (or outlying)

performance. For example, correlations for the last few (rightmost) components degrade

significantly in decompositions with higher number of sites, while in the minimum ISI case

the correlation for component 25 is unexpectedly low for the first decomposition (s = 4)

and higher for the remaining decompositions. Finally, it can be concluded from these cor-

relation images that although the algorithm performance degrades with increasing number

sites, the same set of components tends to be consistently well replicated.
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a. Gaussian b. Exponential c. Uniform

Figure 2.5: Figure reprinted with permission. An illustration of the effect of randomly
distributing subjects across a decentralized data network. Each panel contains an example
graph of connected nodes in the network, where each node represents a site in the network.
The size of each node in the network corresponds to the number of subjects located on that
site. The estimated ISI is computed after running djICA over 5 repeated runs, where each
distinct run utilized a different network sampled from the same distribution. Panel (a) il-
lustrates a network where the number of subjects on each site was sampled from a gaussian
distribution, panel (b) illustrates a network of subjects where the number of subjects on
each site was sampled from an exponential distribution, and panel (c) illustrates a network
where the number of subjects on each site was sampled from a uniform distribution. In
the bottom-left the corner of each panel, we plot the ISI after performing djICA for 5 dif-
ferent runs, where each run resampled the number of subjects on each site from the given
distribution.

How does randomly splitting the data sets across more sites affect performance?

In real-world scenarios, fMRI data is not evenly distributed across research sites, thus mo-

tivating an investigation into the effect of randomly distributing the number of subjects per

site on the effectiveness of djICA . In 2.5, we compare the estimated ISI of djICA using

real-data in a scenario where 2000 subjects are randomly assigned to sites by sampling the

number of subjects on each site from a given distribution P (Θ). We tested three different

distributions for site assignment: normal, exponential, and uniform, setting the mean and

standard deviation both at 128. The sampling process generates nodes (research sites) with

different dataset sizes, and we then run djICA and compute the ISI as given above. We

ran djICA five times for each distribution, resampling the number of subjects per site each

time, and then plotted the ISI for each run. Each panel in 2.5 also illustrates a graph of a
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network where each site is represented as a node. The size of each node in the network

corresponds to the number of subjects on a given site, which is sampled from the given

distribution.

As the figure shows, uniformly distributing subjects across the network reduces vari-

ance in computations when compared to normally distributed subjects; however, all of the

given runs do not vary more than 0.02 with respect to the ISI, and all fall below 0.1 ISI,

indicating favorable performance.

How do the estimated maps compare with previous results?

In 2.3d we provide the spatial maps from three of the highest-correlated components esti-

mated using djICA and pooled ICA for comparison to their corresponding temporal fluctu-

ation modes (TFM) from Smith et al. [111], which also investigated temporal ICA of fMRI.

We discuss this comparison in the following section.

2.5 Discussion

In contrast to systems optimized for processing large amounts of data by making com-

putation more efficient (Apache Spark, H2O and others), we focus on a different setting

common in research collaborations: data are expensive to collect, are spread across multi-

ple sites, and possibly not shareable directly. To that end, we proposed a distributed data

joint ICA algorithm that, in synthetic experiments, finds underlying sources in decentral-

ized data nearly as accurately as its centralized counterpart. This shows that algorithms like

djICA may enable collaborative processing of decentralized data by combining local com-

putation and communication of local summaries. djICA represents an important iteration

towards toolboxes for computing on data distributed across private sites with an emphasis

on collaboration. While other distributed methods for decentralized fMRI analysis have

been recently proposed [50, 51], djICA in particular is able to benefit from the unique

opportunity of globally accumulated multi-subject data.
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To further validate our method we have evaluated it in experiments on real fMRI data.

Our use of djICA to perform temporal ICA of fMRI produces results which compare well

to the pooled version of the algorithm and produces estimated components which compare

well with other work on temporal fMRI analysis [111] that uses much more elaborate multi-

step analyses techniques. Additionally, djICA is robust to random allocation of subjects to

sites, generally performing well with a high number of globally accumulated subjects, and

insensitive to how these subjects are distributed across the sites. We have discovered one

edge-case for real-data djICA in which having less than four subjects per site across all

sites in the network leads to a slight decrease in global performance. While further investi-

gation using a robust hyper-parameter search (which we did not pursue in this paper) may

mitigate this performance reduction, the scenario where all or many sites in a collaborative

analysis would each have fewer than four subjects is highly unlikely. Other decentralized

approaches to fMRI analysis, such as approaches which use the ENIGMA consortium [97],

do not explore this edge-case. Indeed, the lowest number of subjects on a site within the

ENIGMA consortium was 36, with the majority of other sites in the consortium possessing

over 200 subjects [100].

Our decentralized djICA algorithm is a good fit for decentralized collaborative frame-

works, such as the COINSTAC collaboration platform, and is amenable to the privacy guar-

antees including in those platforms. The inclusion of djICA in a system like COINSTAC

would allow for shared analysis between members of pre-arranged consortia without the

exchange of raw data. This alone provides a level of plausible privacy to djICA which is

not available to centralized ICA approaches. As we have explored elsewhere, djICA can be

easily extended to include quantifiable notions of privacy, such as differential privacy [106].

Further investigation is required, however, to investigate the robustness of both plausible

and differential privacy to scenarios involving malicious participants in the consortium. For

example, it has been shown that malicious participants in a collaborative classification task

using a decentralized Deep Neural Network can reconstruct data samples by utilizing Gen-
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erative Adversarial Networks to leverage shared gradient information [142]. It is currently

unclear whether or not methods such as djICA suffer from this information leakage issue;

however, the issue demands future attention.

Privacy aside, real-world networks can suffer from a number of additional implemen-

tation issues: individual sites may have different computing hardware and messages may

be dropped due to network latency or slow processing. While it is likely that issues such as

hardware variance will not significantly influence the analysis in the decentralized case,

other practical considerations should be handled by the overall software framework in

which djICA would be included. The djICA algorithm can easily be made more robust to

by including features such as timeouts, automated resets in response to errors or dropout,

thresholds for minimum sufficient participation from each site, and so on.

Additionally, a number of decentralization-friendly heuristic choices can be made to

improve runtime or performance beyond that of the default settings in djICA. For example,

a stochastic gradient for weight updates can be computed over blocks (or mini-batches) of

data in order to improve runtime. Thus, the block size b can be chosen as a heuristic or

evaluated as a hyper-parameter in order to examine the tradeoff between algorithm runtime

and performance. Other hyper-parameters worth investigating are the tolerance level t,

initial learning rate ρ, maximum iterations J , and the number of components chosen for

local PCA.

In a pooled environment with a known ground-truth, it makes sense to find optimal

values for these hyper-parameters using a grid search, or other hyper parameter selection

method. In many real-life collaborative environments, however, a thorough hyper param-

eter search across sites may be impractical, and as far as we have found, no established

method exists for hyper parameter optimization across decentralized sites. Finally, real-

data problems often lack a reliable ground-truth, which makes it even more difficult and

time-consuming to verify the effectiveness of multiple hyper-parameters. Nonetheless, in

situations where a reliable ground-truth is available, such as in realistic simulations, one
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simple solution would be to aggregate locally searched hyper-parameters; however, this

method is unlikely to yield good performance if the number of subjects varies widely be-

tween sites, or if many of the sites contain only a small amount of data. Another potential

solution would be to have each site participate in a global search using a randomly sam-

pled subset of the local data. This may prove effective provided that enough data can be

made available from each site, but would come at the expense of additional computation,

and additional release of information from each site. In ICA for fMRI, certain auxiliary

measures, such as the cross-correlation between components or the kurtosis of estimated

independent components, could be used to assess performance empirically, starting with an

initial heuristic choice of parameters and making adjustments if the auxiliary measures (or

other indirect validation surrogates) indicate it would be helpful to do so.

Due to the lack of sufficient data problem that our method solves, temporal ICA net-

works from resting state neuroimaging data are rarely reported in the literature. A straight-

forward comparison of our observed networks with typical ones is not possible. However,

our maps should be comparable, to some extent, to temporal fluctuation modes (TFMs)

reported in Smith et al. [111], which performed temporal ICA on denoised spatial ICA

component time courses. A qualitative comparison of the observed ground-truth maps in

our work to the TFM maps reported in their work suggests similarities in certain spatial

map activation patterns between the two. Component 15 resembles TFM 8 with task posi-

tive regions (dorsal visual regions and frontal eye fields) anti-correlated to the default mode

(posterior cingulate, angular gyri, and medial prefrontal cortex). Component 8, with anti-

correlated foveal and high-eccentricity visual areas corresponding to surround suppression

observed in task studies, shows a good resemblance to TFM 4 in that work. As observed in

TFM 2, component 6 shows coactivation patterns of lateral visual areas and parts of thala-

mus. Component 17 from our work, shows a good correspondence to TFM 13 in that work,

with DMN regions anti-correlated with bilateral supramarginal gyri and language regions,

albeit without strong lateralization reported in that work. TFM 1 and component 14 in this
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work, demonstrate anti-correlated somatosensory regions to DMN regions of the brain. A

couple other TFMs, 12 and 15, show moderate correspondence to components 11 and 9,

respectively.

The differences between the networks we observed and the TFMs reported in Smith et

al. [111] may stem from methodological differences and choice of number of independent

components. In that work, instead of performing direct temporal ICA on preprocessed data

to identify fluctuation modes, Smith et al. [111] use a two-step approach: firstly, perform-

ing a high model order spatial ICA, identifying artifactual components, and regressing out

their variance from the time courses of seemingly non-artifactual components, and sec-

ondly, performing a temporal ICA on these denoised time courses. In contrast, we perform

direct temporal ICA, leveraging the large number of samples available in large collaborative

studies and directly getting to dynamics of fMRI. Therefore, the amount of variance cap-

tured during the PCA step in both methods differs. We identify 19 non-artifactual spatial

modes, out of our 50 estimated components; all with spatial map activation patterns local-

ized to gray matter regions and corresponding power spectra of independent time courses

showing higher low frequency amplitude, as observed for intrinsic connectivity networks

from spatial ICA analyses. These maps are included in 2.6. Finally, the data utilized in that

work was from 36 ten minute-runs from 5 subjects, roughly sampled at TR=0.8s, which

yielded 24000 concatenated timepoints, in contrast to roughly 300000 concatenated time-

points from 2000 subjects in this study, which is arguably a more general result.

2.6 Conclusions & Future Work

We have presented djICA, a novel method for decentralized temporal Independent Compo-

nent Analysis, which represents a step toward facilitating large, collaborative analyses of

data in a decentralized fashion. We evaluated djICA on simulated and real fMRI data, with

both experiments illustrating the benefits of djICA, namely the increased availability of a

larger, otherwise inaccessible, subject pool shared across multiple sites. Additionally, since
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Figure 2.6: Figure reprinted with permission. The 19 identified non-artifactual spatial
modes, with spatial map activation patterns localized to gray matter regions. Component
15 resembles TFM 8 from Smith et al.. [111], with task positive regions (dorsal visual
regions and frontal eye fields) anti-correlated to the default mode (posterior cingulate, an-
gular gyri, and medial prefrontal cortex). Component 8 shows anti-correlated foveal and
high-eccentricity visual areas corresponding to surround suppression observed in task stud-
ies, and resembles to TFM 4 in Smith et al.. Component 6 shows coactivation patterns of
lateral visual areas and parts of thalamus. Component 17 shows a good correspondence
to TFM 13 in Smith et al.. with DMN regions anti-correlated with bilateral supramarginal
gyri and language regions, but without strong lateralization reported in that Smith et al..
Component 14 demonstrates anti-correlated somatosensory regions to DMN regions of the
brain. A couple other TFMs from Smith. et al.. 12 and 15, show moderate correspondence
to components 11 and 9 from our estimation.
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djICA does not communicate subject data across sites but only gradients, it is amenable to

privatization via approaches like differential privacy [46], thus further opening the poten-

tial for collaboration between sites where direct sharing of data is not possible. Indeed, the

increased availability of data provided by decentralized methods like djICA enables data-

intensive, and thus underutilized, analyses like temporal Independent Component Analysis.

Our comparison to the results from Smith et al. [111] confirms that djICA produces compa-

rable temporal components. Finally, djICA and other methods like it foster further research

on previously unexplored temporal dynamics in fMRI, such as the effects on temporal ICA

of common confounds often found in datasets consisting of multi-site data.

Additional extensions to the methods provided here include reducing the bandwidth

of the method and designing privacy-preserving variants, possibly, with differential privacy

guarantees, which we have previously investigated for simulated cases [106]. In such cases,

reducing the iteration complexity will help guarantee more privacy and hence incentivize

larger research collaborations. If we were to return to the simulated data case, additional

explorations into robust hyper-parameter searches and the deliberate corruption by noise

may prove interesting for discovering and ameliorating further edge-cases for djICA. Be-

yond temporal ICA, decentralized spatial ICA is also worth investigation, and could be

paired with decentralized clustering to evaluate decentralized dynamic functional network

connectivity. Finally, Infomax ICA represents only one optimization approach to perform

ICA, and while it is amenable to decentralization, other algorithms for ICA, such as fas-

tICA [23] or the flexible entropy bound minimization (EBM) [143] approach, may provide

other benefits beyond ease of decentralization.
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CHAPTER 3

DECENTRALIZED DYNAMIC FUNCTIONAL NETWORK CONNECTIVITY:

STATE ANALYSIS IN COLLABORATIVE SETTINGS

3.1 Introduction

The prospects of sharing data across studies provide researchers with clear and exciting

prospects for collaborative analysis. Although the possible advantages to data-sharing are

clear - increasing sample size and diversity, for example - directly transferring samples

between sites is not always feasible, or desirable. Lack of post hoc sharing provisions,

tedious negotiations of data usage agreements (DUAs), and limitations on local storage

and bandwidth may all impede efforts for direct sharing. Additionally, in privacy-sensitive

settings, direct sharing of data comes at the risk of re-identification, which becomes es-

pecially important in cases where samples belong to particularly rare groups, such as rare

patient populations. Although steps toward anonymization in direct sharing scenarios can

be taken, this anonymity often comes at the expense of data richness, or in the best cases,

at the expense of significant effort by the collaborators involved.

Direct sharing of data is most often favored by centralized analysis frameworks, which

pool data in one location. Though centralized sharing efforts can be powerful, to overcome

the limitations outlined above, the research community requires a new family of decen-

tralized approaches, where the analysis is performed without any direct data transfer, and

data remains stored on disparate sites. One such decentralized alternative utilized by the

ENIGMA framework performs meta-analyses utilizing summary statistics and references

to existing literature to perform analysis [97, 99]. Though the approach ingeniously skirts

issues endemic to centralized approaches, heterogeneity among studies and reliance on

summary statistics tend to negatively impact the effectiveness of meta-analysis approaches.
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The answer to the shortcomings of meta-analysis frameworks are iterative decentralized

methods, where numerical optimization methods and other analysis techniques are split

across multiple sites. Aggregation of shared iterates between sites allow these decentral-

ized analysis frameworks to converge to solutions which are equivalent to the pooled case.

The developers of the COINSTAC decentralized analysis framework [44] have success-

fully amassed a number of decentralized algorithms vital to neuroimaging analysis, includ-

ing but not limited to Independent Vector Analysis [50], Deep Neural Networks [51], and

Voxel-Based morphometry [144]. In this work, we further one particular iterative pipeline,

decentralized dynamic functional network connectivity (ddFNC), which combines a num-

ber of distinct and useful algorithms used primarily in neuroimaging analysis. We build

on preliminary work introduced elsewhere [144], extending the presentation of ddFNC to

include more thorough analysis of the individual algorithms contained within it.

3.1.1 Dynamic Functional Network Connectivity

Functional connectivity (FC) [145] is one popular method for neuroimaging analysis which

evaluates the connectivity between functional networks extracted from functional magnetic

resonance images (fMRI). In particular, the assessment of functional connectivity from

resting-state data has revealed new findings surrounding the high-level spatio-temporal or-

ganization of the brain. In this section, we present a framework for performing decentral-

ized dynamic functional network connectivity (ddFNC) analysis (where FNC refers to the

evaluation of FC between brain networks or components rather than isolated seeds). The

resulting multi-step framework includes decentralized versions for each step of the standard

dynamic functional network connectivity (dFNC) pipeline, including novel algorithms for

decentralized principal component analysis (GlobalPCA ) and decentralized group inde-

pendent component analysis (dgICA), as well as an application of decentralized K-Means

clustering to completely reproduce the full dFNC pipeline.

The standard, data-driven approach to assess FNC dynamics, utilizes 1) spatial indepen-
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dent component analysis (ICA), 2) sliding window temporal correlation, and 3) k-means

clustering of windowed correlation matrices in order to evaluate connectivity between dis-

tinct functional networks. The approach, described by Allen et al. [146] utilizes group

ICA (GICA) [119] to decompose resting-state data from multiple subjects into statistically

independent functional regions. To evaluate temporal dynamics in FNC, the correlation be-

tween component time courses are then computed using a series of sliding windows [147].

Finally, k-means clustering is used to identify FNC patterns that reoccur in time and across

subjects. These resulting clusters are called “FNC states”, describing short periods during

which FNC topography remains relatively stable in the functional domain. In particular,

these states and their shift over time can be used to evaluate group differences between

patients suffering from various kinds of mental illness and healthy controls [148, 149].

3.1.2 Federated Learning for Neuroimaging

Although no other methods for decentralized dFNC exist in the literature, a number of other

approaches for federated learning on neuroimaging data exist in the literature. First, meta-

analysis frameworks such as ENIGMA [97, 99], perform analysis on local data, where

meta-statistics of the analyses are then aggregated in a decentralized fashion to produce

global results. For example, Silva et al. implement the ENIGMA framework to provide

structural analysis of subcortical brain-data between multi-site neuroimaging studies [150].

As mentioned above, meta-analyses can introduce artifacts to standard machine-learning

algorithms due to heterogeneity between studies. As such a number of approaches for itera-

tive federated training of machine learning algorithms have been proposed in the literature.

In general machine-learning applications much focus has been given to federated deep

learning [151, 40, 41, 152, 153, 154], since training of deep learning models requires large

amounts of data which may be decentralized across a data network.

In neuroimaging applications, a more diverse array of algorithms have recently ap-

peared for federated learning. On the deep learning side, Lewis et al. propose apply a
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decentralized approach for deep learning to aid in the classification of neuroimaging ad-

diction data [51]. Similarly, Remedios et al. provide a decentralized application of deep

learning for neuroimage segmentation [155]. Decentralized Joint Indepdenent Component

Analysis [156], Independent Vector Analysis [50], decentralized Stochastic Neighbor Em-

beddings [53], and Voxel-Based Morphometry [144] have also been applied to the analysis

of decentralized neuroimaging data. In general, many of these frameworks proceed by

iteratively computing the statistics used for optimization of a particular algorithm in a de-

centralized way. Though the statistics used for optimization are different and present novel

challenges, our algorithm for ddFNCwill proceed much in the same way.

3.2 Materials and Methods

In this section, we present the data and experimental methodology utilized to evaluate de-

centralized group ICA, along with decentralized PCA (parallel and otherwise), decentral-

ized clustering as well as the complete decentralized dFNC pipeline. First, section 3.2.1

presents our novel method for performing group ICA in a decentralized setting. Second,

section 3.2.1 presents a novel method for performing decentralized PCA in parallel, im-

proving the runtime of our previous decentralized PCA method.

Section 3.2.4 describes the functional MRI data used for evaluation of all novel meth-

ods. Then, section 3.2.5 provides outlines of all the experiments performed for each

method.

3.2.1 Decentralized Group ICA

The first step in the dFNC pipeline for fMRI is group independent component analysis

(gICA) [119]. Suppose that sites collect data X ∈ Rd×N , where d is the size of the voxel

dimension, and N is the total number of time-points across all subjects on all sites. In linear

spatial ICA, we model each individual subject as a mixture of r statistically independent

spatial components, A ∈ Rd×r, and their time-courses, Si ∈ Rr×Ni , where Ni is the
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length of the time-course belonging to site i. Although there are multiple approaches to

aggregating subjects for the group analysis [157], we can model the global (i.e., cross-site)

data set X as the column-wise concatenation of s sites in the temporal dimension:

X = [AS1 · · ·ASi · · · ASs] ∈ Rd×N ,

where [· · · ] represents column-wise concatenation, s is the total number of sites in the

consortium, and each site is modeled as a set of subjects concatenated in the temporal di-

mension as ASi = Xi = [Xi1 · · ·Xim · · ·XiM ], i.e., the collection of all M subjects in site

i. The advantage of the temporal concatenation approach is that it only requires the compu-

tation of one ICA, yielding unique time courses for each subject while assuming common

group spatial maps. Thereafter, subject-specific maps can be easily estimated via local

back-reconstruction. Spatial concatenation for group analysis is also possible, allowing

for direct estimation of unique spatial maps while assuming common time courses instead.

Although the two approaches to concatenation amount to different ways of organizing the

data, temporal concatenation appears to perform better for fMRI data [158].

In this work, the goal is to learn a cross-site global unmixing matrix, B ∈ RN×r, such

that Â = XB ≈ A, where Â ∈ Rd×r is the set of unmixed maximally spatially indepen-

dent components. To this end, we perform a decentralized group independent component

analysis (dgICA), and use least squares to estimate the m-th subject’s temporal compo-

nents in the i-th site by computing Ŝim = A−Xim, where A− is the pseudo-inverse of the

estimated sources.

Prior to ICA, we perform principal component analysis (PCA), as is typically done to

reduce computational complexity and/or memory usage. In order to prevent disparate sites

from obtaining full data samples, we resort to decentralized PCA [156]. Firstly, however,

a (local) subject-wise preprocessing step recommended prior to spatial GICA [157] is per-

formed, thus constituting a minor variation of the two-stage decentralized PCA procedure
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utilized in [156]. Effectively, all sites preprocess each subject by removing local means

in the voxel dimension, followed by reducing and whitening their temporal dimension to

a common (and large) k1 components. Then, decentralized PCA of the preprocessed data

takes place in the usual two stages. First, each site performs a LocalPCA dimension-

reduction (without whitening) of all preprocessed concatenated local subject data to a com-

mon k2 principal components in the temporal dimension. A decentralized second stage

(GlobalPCA) then produces a global set of r spatial eigenvectors, U ∈ Rd×r. As outlined

in [156], this second stage asks sites to pass locally-reduced eigenvectors to other sites in

a round-robin scheme where, upon receiving a set of eigenvectors, a site then stacks them

in the column dimension along with its local preprocessed (but not k2 reduced) data, and

performs a further reduction of the stacked matrix. The resulting (locally updated) set of

k2 eigenvalues is then passed to the next peer in the network. This process iterates once

through each site until the global eigenvectors reach some aggregator, or otherwise termi-

nal site in the network. The algorithms for the LocalPCA and GlobalPCA steps are given

in Algorithms 6 and 4, respectively. Following the recommendation for choices of k1 and

k2, we follow the recommendations in [157] and [159], choosing k1 = 120 and k2 = 5 · r.

Algorithm 4 Figure reprinted with permission. Global PCA algorithm (GlobalPCA)

Require: s sites with preprocessed data {Xi ∈ Rd×k1:i=1,2,...,s}, intended final rank r, local
rank k ≥ r.

1: Choose a random order π for the sites.
2: P(1) = LocalPCA(Xπ(1),min{k, rank(Xπ(1))}) ▷ Assume
3: for j = 2, 3, . . . , s do ▷ Round-robin scheme
4: i = π(j) ▷ Set site index.
5: Send P(j − 1) from site π(j − 1) to site π(j)
6: k′ = min{k, rank(Xi)}
7: P′ = LocalPCA(Xi, k

′)
8: k′ = max{k′, rank(P(j − 1))}
9: P(j) = LocalPCA([P′ P(j − 1)], k′)

10: end for
11: r′ = min{r, rank(P(s))}
12: U = NORMALIZETOPCOLUMNS(P(s),r′) ▷ At last site

After performing decentralized PCA either via GlobalPCA or some other decentral-

47



Algorithm 5 Figure reprinted with permission. NormalizeTopColumns
Require: data P and number of columns to reduce r′

1: U = [P1/||P1||, P2/||P2||, · · · , Pr′/||Pr′ ||]
▷ first r′ columns of P

2: return U

Algorithm 6 Figure reprinted with permission. Local PCA algorithm (LocalPCA)

Require: data X ∈ Rd×N and intended rank k
1: Compute the SVD X = UΣV.
2: Let Σ(k) ∈ Rk×k contain the largest k singular values and U(k) ∈ Rd×k the corre-

sponding singular vectors.
3: Save U(k) and Σ(k) locally and return P = U(k)Σ(k).

ized algorithm, the aggregator site then performs whitening on these resulting global eigen-

vectors and runs a local ICA algorithm, such as infomax ICA [21], or fastICA [23] to

produce the spatial unmixing matrix, W ∈ Rr×r. The global eigenvectors, U, are then

unmixed to produce Â by computing Â = UW, which is shared across the decentralized

network (Algorithm 7). Each site i then uses this unmixing matrix to produce individ-

ual time-courses for each m-th subject by computing Ŝim = A−Xim. Each site can then

perform back-reconstruction or spatio-temporal regression (STR) approaches locally [119,

159] to produce subject-specific spatial maps, such as Âim = XimS
−
im in GICA1 back-

reconstruction, where S−
im is the pseudo-inverse of Ŝim.

Algorithm 7 Figure reprinted with permission. Decentralized group ICA algorithm
(dgICA)

Require: s sites with data {Xi ∈ Rd×Ni:i=1,2,...,s}, intended final rank r, local site rank
k2 ≥ 5 · r, local subject rank k1 ≤ Nim.

1: for all sites i = 1, 2, . . . , s do
2: for all subjects m = 1, 2, . . . ,M do
3: Xpre

i,m = Xi,m − µ(Xi,m)
▷ Remove column means

4: Xpre
i,m = NORMALIZETOPCOLUMNS( LocalPCA(Xi,m, k1), k1)

5: end for
6: end for
7: U = GlobalPCA({Xpre

i ∈ Rd×k1:i=1,2,...,s},r,k2)

8: W = ICA(U) ▷ At aggregator site i = π(s).
9: Send Â = UW to sites π(1), . . . , π(s− 1).
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Algorithm 8 Figure reprinted with permission. Back-Reconstruction

Require: Global unmixing matrix Â = UW, local data {Xi,1, . . . , Xi,M} on site i
1: for all subjects m = 1, 2, . . . ,M do
2: Ŝi,m = Â−Xi,m ▷ Retrieve subject time-courses
3: Âi,m = Xi,mS

−
i,m ▷ Use Spatio-Temporal regression or other back-reconstruction

[119, 159] to retrieve subject-specific spatial maps
4: end for

Parallel Global PCA

The global PCA algorithm given above in algorithm 4, taken from [156], can be extended

from the serial version so that it runs in parallel, thus taking advantage of the decentral-

ized nature of the computation to also increase computation speed. The parallel strategy

involves breaking up the consortium into sub-clusters, where GlobalPCAis computed in

parallel within the sub-clusters until the final eigenvectors U arrive at the aggregator. A

diagram of the process for a consortium of 8 sites is given in 3.1, and the general algorithm

is given in Algorithm 9.

Algorithm 9 Figure reprinted with permission. Parallel Global PCA algorithm
(pGlobalPCA)

Require: s sites with data {Xi ∈ Rd×Ni:i=1,2,...,s}, intended final rank r, local rank k ≥ r,
cluster size = C, base cluster size = B.

1: K = ⌊s/C⌋ ▷ Number of Clusters
2: if K > B then ▷ At an “aggregator” site
3: for all c = 1, 2, . . . , K do
4: a = (c− 1)C + 1
5: b = min(c · C, s)
6: Uc = PGLOBALPCA(b− a, {Xa, . . . ,Xb}, k, r)
7: end for
8: U = PGLOBALPCA(K, {P1, . . . ,PK}, k, r)
9: else ▷ at a non-“aggregator” site

10: U = GLOBALPCA(s, {X1, . . . , Xs}, r, k)
11: if At final aggregator then
12: U = NORMALIZETOPCOLUMNS(U)
13: end if
14: end if
15: return U
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Figure 3.1: Figure reprinted with permission. Diagram of the pGlobalPCA algorithm
for a consortium of s = 8 sites, with cluster size C = 2. First, the recursion of the
algorithm breaks the full consortium into clusters of decreasing size until the number of
sites in each cluster is equal to C. Then, each cluster performs the standard GlobalPCA.
As the recursion steps back from this base-case, the result from GlobalPCA is passed
between sub-clusters, and GlobalPCA performed again until the recursion ends.
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3.2.2 Decentralized clustering

In order to perform dFNC in a decentralized setting, we first require a notion of decen-

tralized clustering, used to cluster windowed patient timecourses into one of several con-

nectivity states. Although other kinds of clustering are possible, previous work in dFNC

has focused on the use of K-Means clustering, and thus, we focus first on decentralized K-

Means clustering. A number of decentralized approaches to K-Means exist: first, Dhillon

et al. [160] implement an exact version of lloyd’s algorithm for K-Means over distributed

memory multiprocessors, where each processor broadcasts an updated set of local cen-

troids, according to locally stored data, and global centroids are aggregated by taking the

average of these local centroid updates. Jagannathan et al. implement a similar version of

this approach, but add additional privacy guarantees via encrypted message passing, and

random sharing of centroids, rather than sharing at each iteration [161]. Jagannathan et

al. also provide a general version of privacy-preserving clustering (including K-Means),

where rather than sharing centroid locations each iteration, local clusters are computed to

convergence, and then merged at some aggregator site [162]. Finally, a number of mod-

ern methods improve over standard methods with additional features often attractive in

real-network scenarios. For example, Datta et al. provide an approximative, peer to peer

methods for distributed K-Means [163, 164], and Di et al. provide a fault-tolerant version

of dK-Means, well-suited to large, asynchronous networks [165].

Our aim in this paper is to provide a novel, end-to-end pipeline for decentralized dFNC,

which includes clustering. Thus, which exact choice of algorithm is made for the decen-

tralized K-Means step is an implementation choice, rather than an essential part of our

pipeline. For our purposes, we test four different version of simple decentralized K-Means

algorithms, focusing primarily on differences in centroid computation and updates, rather

than details such as asynchronous updates, or peer to peer schema. First, we implement the

algorithm from Dhillon et al. [160], and we also implement a version of the same iterative

algorithm using a decentralized gradient update, rather than exact centroid computation.
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For this latter strategy, we implement the gradient descent algorithm described in [166],

where at each iteration, locally computed gradients are averaged on the aggregator node

in place of locally computed centroids. Finally, we implement version of these algorithms

using the cluster aggregation strategy described in Jagannathan et al. [162]; however, we

omit the additional privatization strategies for simplicity’s sake. The two former strategies

we call “multi-shot”, because they involve decentralization at each iteration of the algo-

rithm, and the two later strategies we call “single-shot” because they involve aggregation

of the results of locally converged optimization strategies.

To perform clustering for distributed dFNC, we first have each site compute sliding-

window time-course correlations for each subject, where the window length is fixed across

the decentralized network. Additionally, initial clustering is performed on a subset of win-

dows from each subject, corresponding to windows of maximal variability in correlation

across component pairs. To obtain these exemplars, we follow the approach from [148],

and have each site compute variance of dynamic connectivity across all pairs of compo-

nents at each window. We then select windows corresponding to local maxima in this

variance time course. This results in an average of 8 exemplar windows per subject. We

then perform decentralized K-Means on the exemplars to obtain a set of centroids, which

are shared across the decentralized network, which we feed into a second stage of K-Means

clustering.

For the second stage of decentralized clustering, at each iteration, each site computes

updated centroids according to [160], which corresponds to a local K-Means update. These

local centroids are then sent to the aggregator node, which computes the weighted average

of these updated centroids, and re-broadcasts the updated global centroids until conver-

gence. A summary of the complete steps in the dFNC pipeline is given in 3.3.
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(a) Figure reprinted with permission. Multi-Shot
dK-Means with Gradient Descent and Lloyd’s al-
gorithm optimization
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Figure 3.2: Figure reprinted with permission. Diagram of the multi-shot and single-shot
dK-Means algorithms. Panel 3.2a outlines the multi-shot schema using gradient descent or
lloyd’s algorithm. First, randomized centroids are picked by the aggregator, and broadcast
out to the sites. Each site then computes cluster membership, and perform their dK-Means
updates, either by computing a gradient, or by updating the centroid according to lloyd’s
algorithm. These are then broadcast back to the aggregator, and aggregated into new cen-
troids or gradients. New centroids are then rebroadcast, and the algorithm continues until
convergence. In panel 3.2b, a diagram of the single-shot schema is given. In this ap-
proach, each site performs a separate, local K-Means optimization, and the final centroids
are broadcast to the aggregator, which then merges clusters either by merging nearest cen-
troids, or by querying sites to compute a merging error, as is done in [162].
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Algorithm 10 Figure reprinted with permission. Decentralized dFNC algorithm (ddFNC)

Require: s sites with data {Xi ∈ Rd×Ni:i=1,2,...,s}, win-size t, number of clusters k.

1: dgICA →W, global unmixing matrix. Compute Â = UW, and broadcast to sites.

2: for all sites = i = 1, 2, . . . , s do

3: Ŝi,m = Â−Xi,m ▷ Back-reconstruct subject TCs

4: for all windows w = 1, 2, . . . , Ni − t do

5: Ŝi,m,w = [Ŝi,m,w . . . Ŝi,m,(w+t)] ▷ Sliding window of size t over time

6: Vi,m,w = corr(Ŝi,m,w)

7: end for

8: Obtain local exemplar correlation matrices Vi,ex using the process from [148].

9: end for

10: Run DK-MEANS(Vex) [160] to obtain k initial centroids, C0.

11: Run DK-MEANS(V) [160] with initial clusters C0 to obtain k centroids C, and clus-

tering assignment for each instance, L.

12: Return C, L

3.2.3 Computational Complexity

Because ddFNC is a pipeline containing multiple distinct algorithmic components, the

overall computational complexity of the pipeline will depend greatly on implementation

details for each pipeline stage. The choice of ICA algorithm, or whether or not an iterative

method is used to computed SVD for example, will greatly influence the actual complexity

of the entire pipeline. That said, we provide an initial analysis of the GlobalPCA com-

ponent of our pipeline as presented here, with the caveat that further changes can still be

made within each of these depending on implementation preferences and availability of

computational resources. We omit an analysis of complexity for Independent Component

Analysis, since in principle any ICA algorithm could be used, and complexity varies with

the choice of algorithm.
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Figure 3.3: Figure reprinted with permission. Flowchart of the ddFNC procedure e.g. with
2 sites, using multi-shot lloyd’s algorithm for K-Means clustering. To perform dgICA ,
sites first locally compute subject-specific LocalPCA to reduce the temporal dimension,
and then use the GlobalPCA procedure from [156] to compute global spatial eigenvectors,
which are then sent to the aggregator. The aggregator then performs ICA on the global
spatial eigenvectors, using InfoMax ICA [21] for example, and passes the resulting spatial
components back to local sites. The dK-Means procedure then iteratively computes global
centroids using the procedure outlined in [160], first computing centroids from subject
exemplar dFNC windows, and then using these centroids to initialize clustering over all
subject windows.
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The overall computational complexity of ddFNC is best analyzed in terms of the com-

plexity on individual sites, since the decentralization of the algorithm reduces overall com-

plexity into a sum of individual computational demands at each site. Suppose at an indi-

vidual site, we begin with the matrix of temporally concatenated subjects Xi ∈ Rd×Ni .

The complexity of Global PCA can be analyzed in terms of the complexity for the two

Singular Value Decompositions performed first on the covariance matrix Xi ∈ RNi×Ni , and

second on the k1 × k1 matrix computed from stacking eigenvectors. Standard algorithms

for computing SVD by Jacobi rotations have a complexity of O(n3) when computed on

an n × n covariance matrix [167]. Thus, if GlobalPCA uses standard SVD, the overall

complexity will be O(N3
i ) + O(k3

1), with complexity generally increasing as the number

of subjects on local sites increases, or as the desired number of independent components

increases.

Prior to decentralized K-Means, each site computes correlation matrices on the win-

dowed time-courses oflength Ni,j − w for each subject j. If mi subjects are located at a

given site, then the local complexity for computing these matrices is O(mi(Ni − w)k3
1),

so again local computational cost increases with the number of subjects, the number of

timepoints at each subject, and the desired number of independent components k1.

For an analysis of decentralized K-Means, we refer the reader to the discussion in

Dhillon et al. [160]. Let J is the number of K-Means iterations required for the cen-

troid stability for K-Means with C centroids, and let Si = mi(Ni − w) be the number of

correlation matrices computed at each site. The analysis provided in Dhillon et al. gives the

site-wise computational complexity for dK-Means as O((3Ck2
1+SiC+Sik

2
1+Ck2

1) ·J ).

For our pipeline, the choice of decentralized K-Means algorithm is modular, and local site

complexity may be reduced in a number of different ways. For example, implementing a

decentralized version of K-Means++ initialization [168, 169, 170] to may lower the num-

ber of iterations required for stability, thus reducing site-wise complexity as well as overall

complexity. Because further analysis requires digging into the particulars of K-Means and
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Table 3.1: Figure reprinted with permission. Distribution of subjects over original 7 sites.

Site HC SZ Total
1 28 24 52
2 9 9 18
3 28 26 54
4 28 23 51
5 14 13 27
6 28 29 57
7 28 27 55

decentralized K-Means which is outside the scope of this paper, we leave further analysis

of complexity for K-Means as future work.

3.2.4 Functional MRI data for dFNC

To evaluate ddFNC, we utilize imaging data from [148] collected from 163 healthy controls

(117 males, 46 females; mean age 36.9) and 151 age - and gender matched patients with

schizophrenia (114 males, 37 females; mean age 37.8), for a total of 314 subjects.

The scans were collected during an eyes closed resting fMRI protocol at 7 different

sites across United States (see table 3.1) and pass data quality control. Informed and writ-

ten consent was obtained from each participant prior to scanning in accordance with the

Internal Review Boards of corresponding institutions [171]. A total of 162 brain-volumes

of echo planar imaging BOLD fMRI data were collected with a temporal resolution of 2

seconds on 3-Tesla scanners.

Imaging data for six of the seven sites was collected on a 3T Siemens Tim Trio System

and on a 3T General Electric Discovery MR750 scanner at one site. Resting state fMRI

scans were acquired using a standard gradient-echo echo planar imaging paradigm: FOV

of 220 × 220 mm (64 × 64 matrix), TR = 2 s, TE = 30 ms, FA = 770, 162 volumes, 32

sequential ascending axial slices of 4 mm thickness and 1 mm skip. Subjects had their

eyes closed during the resting state scan. Data pre-processing for dgICA was performed

according to the preprocessing steps in [148].
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3.2.5 Experiments

In this section, we describe each of the experiments performed to step the various parts of

our ddFNC pipeline. Since the ultimate goal is to provide ddFNC, we concentrate the bulk

of our quality analysis on that final output; however, at each stage, we perform a number of

small evaluations to make sure each piece works individually using either simulated data.

We also measure the runtime of each stage separately, and compare runtimes and quality

measures for different implementations of each algorithm.

decentralized group ICA

In this section, we present the experimental methodology used to evaluate decentralized

group ICA, which includes decentralized PCA.

Do pGlobalPCA and GlobalPCA produce equivalent components?

Although it is clear mathematically that pGlobalPCA and GlobalPCA are equivalent,

we perform a brief initial experiment to provide empirical evidence of the equivalence.

First, to evaluate our novel method for parallel decentralized PCA, we generate a synthetic

data set using the MATLAB randn function. We generate a single 100 × 100 data set,

and use pooled PCA, GlobalPCA , and pGlobalPCA to reduce the column dimension

to 10 principal components. For GlobalPCA and pGlobalPCA , we first split the data

set onto 10 simulated ”sites”, where each site contains ten rows of the original matrix. If

pGlobalPCA and PCA are functionally equivalent, we expect the correlation matrices to

be nearly completely diagonal. We repeat this experiment 1000 times for each algorithm,

and plot the results in 3.4.

After completing the synthetic experiments, we perform the same experiment using the

real-data described above. We utilize the site-distribution used above, and again compute

the correlation of the estimated PCs, and plot the results in 3.5. For real data, we repeat

each experiment 100 times, with each repetition shuffling subjects between the sites.

How does pGlobalPCAimprove runtime?
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The parallelization in pGlobalPCA (algorithm 9) should provide a performance im-

provement over vanilla GlobalPCA (algorithm 4) , especially in consortia with a large

number of sites, allowing for many computations to be performed in parallel. In order

to test this hypothesis, we perform two experiments designed to evaluate the runtime of

GlobalPCA and pGlobalPCA , and how pGlobalPCA offers an improvement over Glob-

alPCA for certain distributions of subjects over the network.

First, we perform an experiment with synthetic data, using the same data-generation

process as above. In order to evaluate how the runtime improvement for pGlobalPCA varies

depending on the subject/site distribution, we vary both the size of the global data set and

the number of sites in the consortium in order to evaluate how the distribution of data affects

the runtime of both algorithms.

Again, we repeat a similar experiment utilizing the real data-set, evaluating how the

distribution of subjects over the network affects the runtime of GlobalPCA and pGlob-

alPCA . We begin with 2 subjects, and increase by powers of 2 until we are dividing the

314 subjects over 64 sites.

How does the choice of ICA method affect performance?

ddFNC is a highly modular algorithm, thus allowing for the aggregator node in a

given consortium to choose from any kind of Group ICA algorithm made available. Thus,

we perform a brief analysis which compares multiple ICA algorithms in terms of com-

ponent estimation quality and runtime. To measure the quality of components, we match

the estimated components from the given ICA algorithm with the components estimated

in [148], selecting the top components which best match with that ground-truth. Then, we

compute the Moreau-Amari Inter-Symbol Interference index [126] between the estimated

components and the components from [148], and plot the results for the given choice of

algorithm. We note that in [148], the authors utilize infomax ICA, and so a decentralized

infomax will have a comparative edge over other methods.
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decentralized clustering

We perform dK-Means [160] on the computed correlation matrices from the sliding win-

dows described above. We first cluster the ”exemplar” temporal windows computed for

each subject according to the strategy utilized in [148], and then utilize these centroids to

cluster the entire set of computed windows. This provides a set of a k=5 resulting centroids

as well as clustering assignments for each subject’s window.

decentralized dFNC

In this section, we present the experimental methodology used to evaluate the final results

of the decentralized dynamic dFNC pipeline.

We verify that ddFNC can generate sensible dFNC clusters by replicating the centroids

produced in [148]. We closely follow the experimental procedure in [148], with some of the

additional post-processing omitted for simplicity. To evaluate the success of our pipeline,

we run a simple experiment where we implement the ddFNC pipeline end-to-end on the

data, simulating 314 subjects being evenly shared over 2 decentralized sites.

We use a window-length of 22 time-points (44 s), for a total of 140 windows per sub-

ject. For dgICA, we first estimate 120 subject-specific principal components locally, and

reduce each subject to 120 points in the temporal dimension. Subjects are then concate-

nated temporally on each site, and we use the parallel GlobalPCA algorithm to estimate

100 spatial components, and perform whitening. We then use local infomax ICA [21] on

the aggregator to estimate the unmixing matrix W, and estimate 100 spatially indepen-

dent components, Â. We then broadcast Â back to the local sites, and each site computes

subject-specific time-courses.

After spatial ICA, we have each site perform a set of additional post-processing steps

prior to decentralized dFNC. First, we select 47 components from the initial 100, by com-

puting components which are most highly correlated with the components from [148]. We

then have each site drop the first 2 points from each subject, regress subject head move-

60



ment parameters with 6 rigid body estimates, their derivatives and squares (total of 24

parameters). Additionally, any spikes identified are interpolated using 3rd order spline fits

to good neighboring data, where spikes are defined as any points exceeding mean (FD) +

2.5 *std(FD) , where FD is framewise displacement (interpolating 0 to 9 points (mean,sd:

3, 1.76)).

For clustering in general, elbow-criterion estimation can be used to determine an op-

timal number of clusters. For comparison’s sake, however, we use the optimal number of

clusters from [148], setting k=5. For the exemplar stage of clustering, we evaluate 200 runs

where we initialize centroids uniformly randomly from local data, and then run dK-Means

using the cluster averaging strategy in [160]. For our distance measure, we use scikit-learn

[172] to compute the correlation distance between covariance matrices following the meth-

ods in [148]. To keep our implementation simple, unlike [148], we do not utilize graphical

LASSO to estimate the covariance matrix, and thus do not optimize for any regulariza-

tion parameters. Additionally, we do not perform additional Fisher-Z transformations or

perform additional regularization using a previously computed static dFNC result. Future

implementations may also utilize a decentralized sFNC algorithm as preprocessing, as is

done for the pooled case in [148]. Finally, for the second stage of dK-Means, we initial-

ize using the centroids from the run with the highest silhouette score, computed using the

scikit-learn python toolbox [172], again running dK-Means to convergence. After comput-

ing the centroids, we use the correlation distance and the Hungarian matching algorithm

[173] to match both plotted spatial components from dgICA and the resulting centroids

from dK-Means.

Finally, to make a more direct comparison between our analysis and the pooled case, we

compare the resulting centroids with centroids estimated using pooled K-Means, measuring

the correlation between the resulting centroids over multiple runs.

We also separate out the centroids for each group, and visualize them according to the

procedures in [148]. Following the procedures in [148], we first calculated the element-
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wise subject medians for each state according to the final clustering assignments from

dK-Means. We then use the subject medians for each state and evaluated the differences

between patient and healthy-control groups using a two sample t-test.

3.3 Results & Discussion

3.3.1 GlobalPCA vs pGlobalPCA

In 3.5 we plot the correlation of the components estimated from GlobalPCA and pGlob-

alPCA, averaged over 10 repeated runs, where each run created a new simulated matrix to

be reduced. Clearly, the results indicate near-equivalence of the two algorithms, with mi-

nor differences likely due to noise from the serial GlobalPCAutilizing a different, random

ordering of sites, or from the stochastic nature of infomax ICA.

In 3.4, we plot the average runtime for GlobalPCA and pGlobalPCA across three dif-

ferent scenarios of changing the subject and site distributions across a consortium. In panel

a, we increase the number of subjects in a global consortium with 2 fixed sites. In panel

b, we increase the number of sites in a global consortium, keeping the number of subjects

fixed at 1024. In panel c, we increase the number of sites and subjects simultaneously.

The runtime comparison for the fixed number of sites in panel a illustrate the equivalent

runtime for each algorithm in a scenario where the total number of sites is equal to the

number of allowed cluster groups in pGlobalPCA. In such cases, where the parameter

b is set to equal the number of sites in the consortium, pGlobalPCA is equivalent to

GlobalPCA, and the algorithms perform comparatively.

The runtime comparison in figure b, however, illustrates the benefits of parallel, decen-

tralized PCA. In a highly distributed setting, where the number of sites is much larger than

the parameter b, pGlobalPCA decreases runtime over standard GlobalPCA by executing

certain steps in parallel, leveraging the decentralized design to improve runtime.

Panel C illustrates both a failure case for pGlobalPCA, where increased bandwidth

between many small sites with small data invokes a small hit in runtime; however, it also
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Figure 3.4: Figure reprinted with permission. Runtime comparison of GlobalPCA (algo-
rithm 4) and Parallel Global PCA (pGlobalPCA, algorithm 9) for three different scenarios.
In panel a, we increase the number of subjects in a global consortium with 2 fixed sites. In
panel b, we increase the number of sites in a global consortium, keeping the number of sub-
jects fixed at 1024. In panel c, we increase the number of sites and subjects simultaneously.
The blue curve represents the mean runtime over 10 repeated runs for the GlobalPCA al-
gorithm, and the green curve represents the mean runtime over 10 repeated runs for the
pGlobalPCA algorithm.

illustrates that pGlobalPCA does not suffer as significant of a hit as more sites are added

into the consortium, whereas the serial design of GlobalPCA suffers significantly.

3.3.2 dgICA results

3.6 plots the Moreau-Amari index for several different ICA algorithms performed at the ag-

gregator node. In 3.9 we plot some of the estimated components from dgICA with infomax

ICA, and compare with the matched components from pooled ICA. We also provide the

correlation of estimated components in 3.9c and 3.9d. Indeed, dgICA with Infomax ICA

provides components which are a good estimate of the pooled case, with the ISI between

pooled and decentralized cases measured below 0.1, and the component-wise correlation

of components providing a near exact estimate of the pooled components. This indicates

that our decentralization strategy works, and does not incur a significant penalty to quality

of the estimations via decentralization alone. This assurance of quality in decentralization

may change when privacy measures, such as differential privacy, are taken; however, our

analyses here is sufficient to show that decentralization alone does not significantly affect
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Figure 3.5: Figure reprinted with permission. Correlation of components estimated from
GlobalPCA and Parallel GlobalPCA , averaged over 10 separate runs.
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Figure 3.6: Figure reprinted with permission. The Moreau-Amari Index (y-axis) com-
puted for our algorithm, compared over multiple ICA algorithms (x-axis). Choices of ICA
algorithm were evaluated 10 times over the same set of principal components, and then
compared with the ground truth set of estimated components.

the quality of estimation, and we leave the further problem of assuring estimation along

with quality for future work.

3.3.3 ddFNC results

In 3.9 we plot some examples of the components estimated from decentralized spatial ICA

in comparison with the spatial components from [148], after performing Hungarian match-

ing between the estimated spatial maps. We also plot the correlation of the components

from our ICA implementation in comparison to the components from [148]. Indeed, the es-

timated components are highly correlated with the results from [148], for all 100 estimated

components, as well for the 47 selected neurological components from [148], indicating
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(a) Figure reprinted with permission. Median Centroids over all groups, estimated with Pooled
dFNC [148]

(b) Figure reprinted with permission. Median Centroids over all groups, estimated with ddFNC

Figure 3.7: Figure reprinted with permission. The k = 5 median centroids over all
groups for pooled dFNC from [148] (panel 3.7a), and the hungarian-matched centroids
from ddFNC (panel 3.7b).

that dgICA is able to produce results comparable to the pooled case. We include addi-

tional spatial maps for all 47 estimated spatial components in the supplementary material.

First, in 3.8, we plot the correlation between the centroids estimated with our method,

and those estimated with a pooled gICA and pooled K-Means. Decentralized centroids

estimated with decentralized LLoyd’s algorithm match better to the pooled case, with each

centroid correlating above 98% with the pooled estimation. The gradient-descent imple-

mentation does not converge to the pooled solution as well, though the results are still

greatly similar, correlating above 85% with the pooled case.

The improved performance of decentralized Lloyd’s algorithm can be explained in part

by the lack of thorough hyper-parameter searching for the Gradient-Descent based algo-

rithm, which would likely improve the results. For the purpose of this work, since Lloyd’s

algorithm provides near perfect estimation of the pooled centroids, we leave the task of

decentralized hyper-parameter searching for future work.

In 3.7 we plot the centroids from [148] (panel 3.7a), as well as the centroids estimated

66



using decentralized dFNC (panel 3.7b). Additionally, we plot the correlation between the

centroids estimated with our method, and those estimated in the pooled case, given in 3.8.

In 3.10 through 3.12, we plot the group centroids for healthy controls (3.10), patients

with schizophrenia (3.11), and the differences between each group (3.12). Although our

results show slight differences compared to the analysis in [148], states 2 and 4 from our

estimation closely resemble states 2 and 3 in [148], with the high anticorrealtion within

the sensory and motor regions. Our estimation of state 4 best fits with state 3 from [148],

showing greater sensory-motor anticorrelations than our state 2, as well as higher activation

in the default mode. Our states 1 and 5 bear striking similarity to one another, and best

compare with states 4 and 5 from [148], while our state 3 compared best with state 1 from

[148].

3.3.4 Privacy

One of the advantages of decentralized analysis pipelines is that only intermediary statistics

are passed between sites, and full patient records never are released across the network.

These kinds of decentralized algorithms are “plausibly private” [47], due to the lack of

directly identifiable records in the global data network. Our pipeline for ddFNCis clearly

plausibly private, since no full data instances are explicitely passed between sites during

analysis.

The limitation of plausibly private algorithms is that the actual ensured privacy is not

quantifiable, with risk of identification never clearly assured. Measures such as Cynthia

Dwork’s differential privacy [174] have been proposed to alleviate the concerns of plausible

privacy, with concrete mechanisms available to ensure privacy up to a given level with some

loss of model utility accrued in exchange for privacy assurances [175].

The addition of differential privacy introduces further problems to a pipeline which of-

ten involve new variables in the pipeline such as optimal privacy mechanism, choice of

privacy budget, and how the privatized algorithm compares in terms of utility with non-
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Figure 3.8: Figure reprinted with permission. Correlation between pooled centroids and
decentralized centroids estimated using decentralized LLoyd’s algorithm and decentralized
Gradient-Descent. The centroids from LLoyd’s algorithm are much closer to the pooled
case.
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privatized models. Thus, our pipeline represents an important first step towards fully dif-

ferentially private ddFNC, providing a clear direction for future work.

3.4 Conclusion

In this paper, we presented a simple case study of how functional network connectivity

analysis can be performed on multi-site data without the need for pooling data at a central

site. The study shows that both the decentralized regression as well as the decentralized

dynamic functional network connectivity yield results that are comparable to its pooled

counterparts guaranteeing a virtual pooled analysis effect by a chain of computation and

communication process. Other advantages of such a decentralized platform include data

privacy and support for large data. Further extensions to the decentralized regression algo-

rithm presented here include- adding a regularization term (ridge, lasso and elastic-net) to

the objective function, standardized development of gradient descent schemes to perform

optimization in a more iterative fashion and developing a differential privacy version for

each algorithm. In conclusion, the results presented here strongly encourage the use of

decentralized algorithms in large neuroimaging studies over systems that are optimized for

large-scale centralized data processing.

citations
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(a) Figure reprinted with permission. Activation in the ventricular Supplmentary Motor Area
(vSMA)

(b) Figure reprinted with permission. Activation in the Inferior Frontal Gyrus (IFG)

(c) Figure reprinted with permission. (d) Figure reprinted with permission.

Figure 3.9: Figure reprinted with permission. Panels 3.9a-3.9b illustrate examples of
matched spatial maps from dgICA and pooled ICA. Panels 3.9c and 3.9d show the correla-
tion of the components between pooled spatial ICA and dgICA after hungarian matching.
Panel 3.9c shows correlation between all 100 components, and panel 3.9d shows correla-
tion between the 47 neurological components selected in [148].
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(a) Figure reprinted with permission.
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(b) Figure reprinted with permission.
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(c) Figure reprinted with permission.
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(d) Figure reprinted with permission.
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(e) Figure reprinted with permission.
Healthy Control State 5

Figure 3.10: Figure reprinted with permission. Estimated median states for 163 healthy
controls, computed using decentralized dFNC with k = 5, using the original site configu-
ration from the Fbirn data set described in section 3.2.4.
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(a) Figure reprinted with permission. Patient
State 1
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(b) Figure reprinted with permission. Patient
State 2
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(c) Figure reprinted with permission. Patient
State 3
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(d) Figure reprinted with permission. Patient
State 4
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(e) Figure reprinted with permission. Patient
State 5

Figure 3.11: Figure reprinted with permission. Estimated median states for 151 patients,
computed using decentralized dFNC with k = 5, using the original site configuration from
the Fbirn data set described in section 3.2.4.
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Figure 3.12: Figure reprinted with permission. Estimated median group differences for a
two-tailed t-test between the 151 patients and 163 healthy controls, computed after decen-
tralized dFNC with k = 5, using the original site configuration from the Fbirn data set
described in section 3.2.4.
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CHAPTER 4

PEERING BEYOND THE GRADIENT VEIL WITH DISTRIBUTED AUTO

DIFFERENTIATION

4.1 Introduction

The distributed deep learning community has long gravitated towards methods which share

gradients during training [176, 177]. Owing in part to the linearity of the gradient, methods

like distributed stochastic gradient descent (dSGD) have served as the backbone for large-

scale frameworks such as horovod [178], PyTorch [179], and others. When viewed through

the lens of auto-differentiation (AD) [180], however, we can easily observe that the gradient

is computed as the outer-product of two smaller matrices, which are accumulated during

the forward and backward passes through the network. In this work, we develop this simple

fact into an elegant new framework for distributed deep learning. We show that methods

grounded in AD naturally provide a bandwidth reduction over standard dSGD and other

state of the art methods like PowerSGD, along with competitive performance. We aim

to show that much can be gained by turning the focus of distributed learning away from

gradient-centrism and toward auto-differentiation.

The many parameters at work in deep neural networks (DNNs) require significant

amounts of data to train, with over-fitting becoming a real possibility if not enough data

are provided, or the network is not otherwise regularized. The need for training on large

amounts of data in reasonable time has led the deep learning community to focus on data-

parallel training, where models on different (GPU) processors are synchronously trained

on their respective subsets of data [181] maintaining the same gradient. Distributed deep

learning can also be motivated by a desire to keep local training samples hidden. For ex-

ample, the application of deep learning to medical problems which utilize highly personal
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data such as medical imaging scans or DNA sequences can require models to be trained on

samples which cannot be transferred from one data gathering site to another due to legal

or ethical considerations. These issues motivate privacy-sensitive toolboxes for distributed

learning [44].

One of the main obstacles to the scalability of distributed deep learning is the bottle-

neck introduced by the large amount of information transmitted over the network during

training. Zhang et al. [182] showed that in < 100 Gb/s networks, training runtime is signif-

icantly worse without compression, preventing linear scaling with workers or model size.

Svyatkovskiy et al. [183] also showed that runtime increased with network size when train-

ing distributed RNNs. In extreme cases, [184] where the number of parameters is much

larger than network bandwidth, communication time dominates training time. Finally, ef-

ficient communication of statistics during training has been a preoccupation of algorithm

designers since the advent of the field (see [185]&[178] for specific examples, and [186] for

survey; also methods mentioned in related works). Even if network architectures are ideally

constructed, communication will always limit the overall runtime of distributed algorithms.
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If we take a step back from gradient-centric distributed methods, however, we notice a

simple but startlingly profound observation regarding the gradient’s structure. In reverse-

mode auto-differentiation, the gradient of a layer is computed as an outer-product of the

input activations to that layer and the partial derivative with respect to that layer’s output.

These two component matrices are themselves often smaller in size than the full gradi-

ent, and perhaps more importantly, they represent an explicit structure at work behind the

gradient computation which deserves consideration on its own ground. In this work, we

will aim to show that distributed auto-differentiation algorithms exploiting this inherent

outer-product structure exhibit myriad benefits, such as significant bandwidth reduction

and performance improvements, when compared to standard dSGD algorithms.

Our contributions in this work can be summarized as follows: First, we highlight a key

observation that the outer product structure of the gradient inspires a class of inherently

communication efficient distributed learning algorithms. Next, we present a method which

elegantly and naturally arises from the gradient’s outer-product structure: rank-distributed

Auto Differentiation (rank-dAD). Rank-dAD exploits the gradient’s outer-product struc-

ture so that rank-reduced estimates of the component matrices can be efficiently commu-

nicated to reconstruct an estimate for the true global gradient. Through the use of a new,

linear-time algorithm for structured power iterations (SPI), rank-dAD drastically reduces

bandwidth while still maintaining model performance. The differences between the exist-

ing approaches and our proposed step away from the gradient compression are highlighted

in Figure 4.1. We illustrate our methods on benchmark deep learning problems such as

digit recognition with MNIST, continuous time-series classification with a GRU-RNN on

the UEA datasets [187], and large-scale image recognition with a vision-transformer [188]

on the cifar-10 dataset.
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4.2 Methods

Let N (W ) be a deep neural network with L hidden layers. Let X ∈ RN×M be the input

batch of data with N samples and M dimensions. Let Y ∈ RN×C be the target variable of

dimension with N samples and C dimensions. let hi be the size of the ith hidden layer. For

a feed-forward network, the weight matrices are thus Wi ∈ Rhi×hi+1 , with h0 = M and

hL+1 = C. Let φi(x) be the activation used at layer i in the network, and let L be a given

cost-function.

For a feed-forward network, the activations at layer i are thus computed as

Zi = Ai−1Wi +Bi Ai = φi(Zi) (4.1)

4.2.1 Reverse-Mode Auto-Differentiation

AD is a class of methods through which derivatives of functions may be calculated during

the execution of a code which evaluates that function. The backpropagation algorithm for

training deep neural networks is specific case of reverse-mode AD, in which derivatives

are propagated backwards along the data flow graph. This is a two stage process: first a

forward pass through the function is computed, during which intermediate outputs from

expression saved and relationships between variables are recorded. After the forward pass,

a backward pass evaluates the contribution of each intermediate variable to the derivative of

the output, retracing and combining intermediate variables and expressions until returning

to the input. [For a survey, see 189].

Following reverse mode AD, we use the chain rule to compute the derivative at each

layer. At the output layer, we first compute the gradient of the loss w.r.t. the output acti-

vations ∇AL
L, and take the Hadamard product with the derivative at the output activation
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φ′
L(ZL) to compute the gradient w.r.t. the output, i.e., ∆L

∆L = ∇AL
L ⊙ φ′

L(ZL) (4.2)

At higher layers (where i < L), we can continue to compute these errors as

∆i = (∆i+1Wi ⊙ φ′
i(Zi)) (4.3)

At layer i, the gradient of the weights ∇Wi
L at layer i can thus be computed exactly as

∇Wi
L = A⊤

i−1∆i (4.4)

The key insight offered to us by the reverse-mode AD perspective into deep learning is

that in many cases the dimensionality of the intermediate variables accumulated during the

forward and backwards passes of AD will be less than that of the gradient. In other words.

the gradient is a low rank matrix in most practically relevant cases, and this rank is limited

from above by the batch size. For example, consider a matrix-vector product y = Wx. If

Alice is transmitting the gradient ∇WL to Bob, where only Alice knows x, we can note that

∇WL is the outer product of x and ∇yL. If W ∈ Rm×n, then these two vectors together

have dimensionality m+ n, and we are often in the regime where m+ n ≪ m× n.

This observation suggests a novel algorithm for backpropagation via distributed auto-

differentiation (dAD). We present this algorithm and some more communication-efficient

variants in the following sections.

4.2.2 Exploiting Outer-Product Structure for Distributed Learning

The core of our work relies on a rather simple observation: standard auto-differentiation

computes the gradient via an outer-product of two smaller matrices (see equation 4.4).

This elementary fact encourages a new way of looking at distributed learning in which the
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gradient’s component matrices are shared instead of the full gradient itself, as is standard

practice. Indeed, in cases where the batch size is significantly less than the hidden dimen-

sion ( i.e. N << hi ) if we were to simply transfer the two component matrices of the

gradient, we would already significantly reduce communication overhead. After commu-

nicating component matrices, sites can compute exact gradients by merely concatenating

in the batch dimension, and computing the product as normal.

Although the naı̈ve circulation of component matrices seems an attractive approach on

its own, certain difficulties emerge motivating further work to create a more practically

useful distributed learning algorithm. One problem, for example, with fully communicat-

ing component matrices is that bandwidth usage is directly tied to the chosen batch size,

which can be undesirable in applications where large batch-size is desired, or where we ac-

cumulate results over an additional sequence dimension, such as when utilizing recurrent

architectures. Our fully-realized method achieves efficient communication by capitalizing

on the outer-product structure to perform a structured rank-reduction of the component

matrices in linear time. In the next sections, we present our complete algorithm for rank

distributed auto-differentiation (rank-dAD), the first in our newly-revealed class of efficient

algorithms for distributed auto-differentiation.
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Algorithm 11 Figure reprinted with permission. rank distributed auto-differentiation (rank-
dAD)

Require: {Ns}Ss , {Xs}Ss , {Ys}Ss

1: for all site s do

2: {A(s)
i }Li=0 = forward(Ns, Xs)

3: end for

4: for all hidden layer i = L, 0 < i ≤ L do

5: for all site s do

6: if i == L then

7: ∆
(s)
L = ∇AL

L ⊙ φ′(Z
(s)
L )

8: else

9: ∆
(s)
i = ∆

(s)
i+1W

(s)
i ⊙ φ′

i(Z
(s)
i )

10: end if

11: Q
(s)
i ,G

(s)
i = SPI(∆(s)

i ,A
(s)
i−1)

12: end for

13: Qi = vertcat({Q(s)
i }Ss ) ▷ At Aggregator

14: Gi = vertcat({G(s)
i }Ss ) ▷ At Aggregator

15: Q̂i, Ĝi =SPI(Qi,Gi) ▷ see Algorithm 12

16: broadcastToSites(Q̂i, Ĝi)

17: for site s do

18: ∇(s)
Wi

= P̂⊤
i Q̂i

19: end for

20: end for

4.2.3 Rank distributed Auto Differentiation

The outer-product structure of the gradient invites myriad improvements for distributed

learning. In this section, we elaborate on how iterative rank-reduction methods can capital-

ize off of the outer-product structure, fostering an algorithm in which rank-reduced compo-
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nent matrices can be computed efficiently and communicated instead of the full gradient.

These component matrices provide a method for estimating the true global gradient while

reducing the overall bandwidth usage from quadratic to linear with respect to the layer size.

We call this method rank distributed auto-differentiation (rank-dAD), as it combines iter-

ative rank-reduction with our core insight of distributed auto-differentiation into a single,

efficient algorithm.

First, we assume that all sites coordinate the initialization of local copies of the chosen

architecture - for example, they can share a choice of random seed and probability distri-

bution when generating initial weights. Each site will maintain a local copy of the model

weights in memory, and these models will ultimately have equal weights. For simplicity,

each site also shares a set of hyper-parameters, such as learning rate, momentum, number

of epochs, etc. In principal, hyper-parameters and even certain architectural elements could

be allowed to vary between sites based on local needs; however, such circumstances will

not affect the overall performance of the model in terms of its communication and com-

putational benefits compared to standard distributed algorithms, and so we leave these as

future work.

For a given batch, rank-dAD first performs the typical forward and backward passes

from reverse-mode auto-differentiation, accumulating local activations and partial deriva-

tives as would normally be used for local gradient computation. Next, these component

matrices are rank-reduced along the batch dimension. Formally, we begin with Ai−1 ∈

RN×hi−1 and ∆i ∈ RN×hi , and reduce these to matrices G ∈ Rk×hi−1 and Q ∈ Rr×hi

where r is a chosen natural number designating our maximum target rank. Following rank

reduction, we transmit the rank-reduced matrices to a single aggregator, or set of aggre-

gators which will perform the next further reduction step. At aggregator nodes, we then

concatenate the received Q and G matrices, and perform a final rank-reduction to obtain

Q̂ and Ĝ. Once the reduction has obtained data from all sites in the network, we broad-

cast the final reduced component matrices, and can locally estimate the gradient from these
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components. For simplicity, we will only designate one node in the network as the aggre-

gator, as this models the architecture supported by COINSTAC [44], our target platform;

however, in principal, multiple aggregation stages could be used, as in ring-reduce, or hi-

erarchical communication frameworks for example. We leave the detailed investigation of

these alternate communication setups as future work.

Algorithm 12 Figure reprinted with permission. Structured Power Iterations (SPI)

Require: ∆i ∈ RN×hi , Ai−1 ∈ RN×hi−1 , r ∈ N+, n, θ = 10−3

1: Q = [ ],G = [ ]

2: C = Ai−1A
⊤
i−1

3: B = ∆⊤
i C

4: for j = 0, j ≤ r do

5: gj
0 ∼ N (0, 1)

6: for k = 1, k < n do

7: gj
k+1 = B∆ig

j
k −Q(G⊤gj

k)

8: end for

9: v = ∆ig
j
k

10: σj =
√
v⊤Cv ▷ May be avoided1

11: qj = A⊤
i−1v/σ

j

12: if ||gj−1 − gj||2/||gj−1||2 ≤ θ then

13: break

14: end if

15: Q =concat(Q,qj)

16: G =concat(G,gj)

17: end for

18: return(Q,G)
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Structured Power Iterations

Observe that we can compute the singular vector corresponding to the dominant singular

value of ∇Wi
L by iterating the following recurrence:

g1
k+1 = (∇Wi

L)⊤(∇Wi
L)g1

k (4.5)

Relying on (4.4), and pre-computing C = Ai−1A
⊤
i−1, B = ∆⊤

i C, we can instead iterate:

g1
k+1 = B

(
∆ig

1
k

)
(4.6)

Compared to the O(h2) complexity of the iteration (4.5), the complexity of the structured

power iteration is just O(h × N) and since N ≪ h for all practical models, it is linear

in h. The corresponding singular value σ1 =
√
vTCv (where v = ∆ig) is computed in

O(h×N) once per singular vector, while computation of the left singular vector q1 is just

O(h×N) as q1 = A⊤
i−1v/σ

1.

We successively collect (σjgj,qj), absorbing singular values into one of the vectors1

constructing respective Gj and Qj by concatenating gs and qs as columns, and proceed to

computing the next singular vectors set by peeling the previously computed least-squares

optimal low-rank representation:

gj
k+1 =

(
(∇Wi

L)⊤(∇Wi
L)−Qj−1G

⊤
j−1

)
gj
k

= (∇Wi
L)⊤(∇Wi

L)g1
k −Qj−1(G

⊤
j−1g

j
k)

(4.7)

We have already shown that complexity of the first component of (4.7) is linear in h, but the

second component is clearly linear in h as well. Thus, thanks to the outer-product structure

of AD gradients, we can compute low rank approximation in time linear in the layer width

1In practice we bypass computing σj and gain additional speed up because it cancels out in the outer
product since qj contains 1/σj factor.
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Figure 4.2: Figure reprinted with permission. The average test AUC across sites for power-
SGD and rank-dAD with increasing rank on the MNIST data set.

h.2

We have additionally observed, that during training the true rank of ∇Wi
L fluctuates

and although always below N may take significantly lower values than the desired r we

pick for the structured power iterations. To skip computing noisy columns for our Q and

G matrices, we stop the process when ∥gj−gj+1∥2/∥gj∥2 < θ, where we set the threshold

θ to 10−3.

4.3 Results

This section presents the results of several experiments which illustrate the communication

and computational benefits of rank-dAD. We begin with small-scale experiments using a

2To declutter notation we have dropped the layer index on h, as each h ≫ N .
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feed-forward architecture for digit classification of the MNIST data set, and then show a

similar small example with a GRU-based recurrent architecture used for multivariate time-

series classification on several datasets from the UEA repository. Finally, we show how

rank-dAD can be used for tasks using modern transformer architectures for both sentiment

analysis of the IMBD dataset, and a larger scale experiment using Vision Transformers

[188] for image recognition on Cifar-10. Table 4.1 provides information on the three archi-

tectures which were used for experiments.

Architecture Problem Type Hidden Layer Sizes Sequence Length Effective Depth Datasets Tested

Feed Forward Digit Recognition 1024,1024 - 2 MNIST
Feed Forward Disorder Prediction from sMRI 1024,512,256,128,64,32 - 6 FreeSurfer Volumes Esti-

mated from sMRI
GRU Multivariate Time-Series Classification 512,256 256 2× 256 Spoken Arabic Digits,

PENS-SF, NATOPS, Pen-
Digits

Vision Transformer Object Recognition 128 50 (patch size 32) 12× 50 CIFAR-10

Table 4.1: Figure reprinted with permission. Data sets and architectures tested as part of
the experiments for this paper.

All experiments were run on a SLURM cluster which submits jobs to one of the 26

machines on the same network. Specs for these machines are provided in Table 4.2. For all

experiments, all networks were implemented in PyTorch with Python 3.8 using an Adam

optimizer with a fixed learning rate of 10−4 and batch size of 64 per site. We performed

k = 5-fold cross-validation for all experiments, and plot the average results with error bars

across these folds. We use the gloo distributed backend for communication between nodes,

with all distributed communication methods implemented in native PyTorch.

In Figure 4.2, as a performance sanity-check we compare the Area-Under the Curve

(AUC) for digit recognition on MNIST between power-SGD and our method. Table 4.3

Table 4.2: Figure reprinted with permission. Specs for the SLURM cluster used to run the
experiments described in §4.3.

Manufacturer Cores Memory GPUs

AMD 64 512 GB 1×Nvidia 2080
Nvidia DGX-1 40 512 GB 8×Nvidia V100
Dell 40 192 GB 4×Nvidia V100
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Table 4.3: Figure reprinted with permission. For a feed-forward network trained on the
MNIST data set, average per-batch runtime of rank-dAD as a ratio of the per-batch runtime
of dSGD. Even with only 4 sites, rank-dAD sees an over 15 times runtime decrease, and
with 18 sites, over 25 times.

Mode/Sites 4 6 8 10 12 14 16 18

dSGD 1 1 1 1 1 1 1 1
rank-dAD 0.063 0.055 0.049 0.046 0.039 0.040 0.037 0.038

shows the average per-batch runtime for rank-dAD as a ratio of the average dSGD runtime.

Rank-dAD provides comparable performance to dSGD, regardless of the choice of rank,

and provides a speedup between 15 and 25 times over vanilla dSGD.

Figure 4.3 plots the effective rank of the gradient as computed by rank-dAD during

training. We notice that as the model trains, the rank needed for reliable estimation, and

thus overall communication, decreases in all layers of the model.

Figure 4.5 compares the performance of rank-dAD with power-SGD for a GRU-RNN

used to classify three data sets from the UEA [187] multivariate time-series repository.

Each curve on each axis plots the mean AUC over 5-fold cross-validation for different

choices of maximum effective rank. Again rank-dAD performs comparably to power-SGD

during training, regardless of the choice of rank.

To test our method applied to a simple neuroimaging problem, we run a simple MLP

architecture for the diagnosis of schizophrenia using simulated volumes generated from the

Freesurfer package. A total of 72 subjects were simulated with 66 brain regions each, using

the formula y = β0 + β1 × AGE + β2 × isCONTROL + β3 × e, where e ∼ N (0, 1). Each

region in the volume has a fixed intercept β0 depending on the region (e.g. 48446.3 for

Right-Cerebellum-Cortex). For each subject, the effect of age on the model, β1, is selected

from a uniformly random range [-300, -100], and the effect of diagnosis, β2 is selected

from a uniformly random range [500, 1000]. Standard unit gaussian noise is multiplied by

a random index β3 chosen from the range [1800, 2200]. More information on this data set

can be found in [190]. To demonstrate the importance of communication bottlenecks in
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Figure 4.3: Figure reprinted with permission. Effective rank for the MNIST dataset across
training time, where the initial maximum rank was set to the number of classes (10).

A. Spoken Arabic Digits B. PEMS-SF C. NATOPS D. PenDigits

Figure 4.4: Figure reprinted with permission. Effective rank for the four time-series data
sets across training time, where the initial maximum rank was set to the batch size of 32.
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Table 4.4: Figure reprinted with permission. For a simple Neuroimaging diagnosis task
using an MLP, runtime taken to achieve 0.86 AUC for each distributed method, and the
speedup compared to dSGD. Our method shows a 2.55 times speedup compared to dSGD,
and powerSGD does not converge to the target AUC in the time it takes vanilla dSGD to
do so (thus showing a slowdown of 0.704).

Method Duration to 0.86 AUC Speedup vs dSGD Epochs Runtime per Epoch
rank-dAD 57.723 (s) 2.55× 20 2.886 (s)
powerSGD 184.773 (s) 0.704× 23 8.033 (s)
dSGD 130.163 (s) 1× 10 13.016 (s)

this setting, we tested a connection between nodes in two different regions in AWS (Tokyo

and London), and ran vanilla dSGD, powerSGD, and rank-dAD to their best AUC over

100 epochs. We report the wall-clock duration taken by each model to achieve the best

validation AUC from dSGD (0.86 AUC). Table 4.4 shows the duration for each distributed

method to achieve the target. Rank-dAD demonstrates a 2.55 times speedup over vanilla

dSGD, and powerSGD actually takes longer to converge to the target AUC, showing a

0.705 times slowdown compared to vanilla dSGD.

Next, in Figure 4.6, we were interested in examining how in large-scale settings with

modern architectures, rank-dAD and dSGD compare with a more rudimentary baseline. As

a baseline, we send only the top 3 columns from the activation and delta matrices to the

aggregator and use these to compute the gradient. This amounts to effectively reducing

the batch-size to 3, and discarding the majority of each batch. We illustrate in this figure

how quickly it takes rank-dAD and dSGD to train to AUC comparable to this baseline.

A. Spoken Arabic Digits B. PEMS-SF C. NATOPS D. PenDigits

Figure 4.5: Figure reprinted with permission. The test AUC for a GRU trained with rank-
dAD compared with the same architecture trained with PowerSGD. Each curve in the two
plots provides the AUC over training for a different maximum rank.
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Figure 4.6: Figure reprinted with permission. Using a Vision Transformer, the log speedup
for achieving matching baseline validation AUC (0.91) on CIFAR-10 trained with rank-
dAD and dSGD compared to the baseline of sharing the top 3 columns from the activation
and delta matrices. In this plot, positive values represent a faster convergence rate in terms
of wall-clock runtime, and negative values represent a slowdown.
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Using a Vision-Transformer as our base architecture for image recognition on CIFAR-10,

our results clearly illustrate that rank-dAD provides a clear speedup over dSGD, achieving

comparable AUC in a much faster runtime. Since our baseline represents a lower bound on

the communication allowed between sites, we also illustrate here that rank-dAD, despite

having the same communication as the baseline, is able to achieve comparble AUC faster,

illustrating the clear benefit of using the rank-reduction method to leverage information

from all samples.

4.4 Discussion

This section presents an analysis of the theoretical and empirical results provided above,

taking note of how each result contributes to support our claims.

4.4.1 Performance

Because dAD involves the transmission of full activations and deltas to all sites, the gra-

dients computed by this method exactly matches those which would be computed in the

pooled case, or in distributed SGD. Thus, dAD is well-suited to applications where the

exact gradients are required, and its bandwidth improvements over vanilla dSGD make it

the favorable choice in such cases.

In many applications, however, low-rank approximations may be sufficient, and meth-

ods like rank-dAD may be applied. For different initial ranks, rank-dAD performs on par

with PowerSGD on MNIST, and often better on the UEA datasets (see figure 4.2). We at-

tribute our improved performance over PowerSGD to a stronger robustness of our low-rank

approximation of the gradient in the L2 sense. For the application to the transformer, rank-

dAD sees a small performance hit when compared to the pooled case, which we believe is

attribute to layer norms being computed locally for the distributed transformers.
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Figure 4.7: Figure reprinted with permission. Assuming a fixed batch-size of 32, and
number of sites as 2, we show the bandwidth benefits of dAD, edAD, and rank-dAD. The
blue curve shows the bandwidth sent during dSGD of Θ(hi × hi+1), which grows roughly
quadratically with the size of the parameters. The red and purple curves show the band-
width of dAD (Θ(N(hi + hi+1))) and edAD (Θ(N(hi)))) respectively. Finally the yellow
curve shows the bandwidth passed during power-sgd, which serves as an upper-limit on the
bandwidth of rank-dad
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4.4.2 Complexity

Distributed Auto-Differentiation

Standard Distributed Auto-Differentiation is quite naı̈ve in terms of its aggregation strategy;

however, the sending of auto-differentiation statistics rather than full gradients does see a

reduction in bandwidth over dSGD for most classes of networks.

Standard Distributed Auto-Differentiation is very similar in terms of computational

complexity to local auto-differentiation, since the exact statistics computed during a normal

forward or backwards pass are used for our distributed algorithm. The only difference is

that at the local sites, we are required to compute the gradient in equation 4.4 with matrices

of shared dimension SN , rather than N . So in the worst case, the complexity of dAD will

be O(hiSNhi+1), rather than just O(hiNhi+1). In sum, with standard dAD, each site will

be required to do slightly more work when more sites which are involved in training.

In terms of communication, we do see that for most classes of networks this naı̈ve

approach to aggregation does still give us an immediate reduction in communication com-

pared to standard distributed SGD. Indeed, as discussed above, the communication at a

given layer for dSGD is quadratic in the layer sizes with total communication O(hi×hi+1).

As long as the effective batch size across the network (i.e., SN ) is significantly less than

the individual number of neurons in a given layer, the communication we have in the worst

case of SN(hi + hi+1) is an improvement. Again, however, this improvement is decreased

when more sites are added to the distributed network, or when the batch size is increased

significantly.

Rank Distributed Auto-Differentiation

Rank-dAD implements structured power-iterations as described in algorithm 12 in order to

reduce local deltas and activations into rank-r B and C matrices, which can be multiplied

together to retrieve the gradient. The power-iterations themselves require a complexity of
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O(N(hi × hi+1)), supposing that the number of iterations is much less than the size of the

hidden layers.

Rank-dAD thus represents a trade-off of local computational complexity in exchange

for reduced bandwidth. Since the rank of B and C will have a rank of at most r, the

bandwidth at each batch at each layer will be O(r(hi + hi+1)). This is an improvement

over the complexity of PowerSGD which has complexity of Θ(r(hi + hi+1)). We can

empirically support this improvement in bandwidth by pointing to the effective rank results

in 4.4 and 4.3. In general, we observe that the effective rank at all layers is lower than the

initially chosen maximum rank, and during training, that effective rank tends to decrease,

further decreasing bandwidth during training.

4.4.3 Privacy Considerations

In its current form, both dAD involves the sharing of input activations across the distributed

network with their batch dimension preserved. If all layers in the network are being shared,

this may create privacy issues because individual activations could be linked with partic-

ular samples. The exactness of the gradient computation and reduced bandwidth in dAD

and edAD thus comes at a privacy risk without the addition of further measures such as

differential privacy,

Rank-dAD addresses these concerns, however, since the batch dimension is reduced

as part of the local power iterations, and so inofmration about individual samples is not

preserved when the statistics are sent. Rank-dAD by itself is thus already plausibly private.

4.4.4 Limitations and Future Work

The key insight of our work is that auto-differentiation provides a unique and useful per-

spective into distributed deep learning, which can be utilized both to improve the bandwidth

of distributed algorithms and to examine the dynamics involved in learning. 4.7 puts po-

tential bandwidths saving in perspective.
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Extension to General-Purpose AD AD has applications to machine learning beyond

deep learning, such as generic gradient-based optimization with the Hessian [191, 192], or

Bayesian posterior inference in MCMC [193]. Further work is required to look into auto-

differentiation as a potentially distributable process in and of itself; however, such work

would open up a much wider domain of machine learning to the insights provided here.

The Problem with Convolutions In their current form, dAD and rank-dAD share input

activations for the given layers in the network. For feed-forward and recurrent networks

(as well as transformers), the bandwidth improvements provided over dSGD are obvious.

Convolutional layers, however, present a bandwidth problem for these methods, because

the size of the resulting output activations from a convolutional layer tend to be much

larger in size than the number of parameters within that layer. Thus, further work is needed

in examining AD applied to convolutional layers to see if bandwidth reduction is available

without the addition of heuristics.

One potential solution to this problem for CNN-based-classifiers would apply Pow-

erSGD to the convolutional layer, and our method to all fully-connected layers found else-

where in the network. Thus, we would still see a bandwidth reduction in the fully-connected

layers without taking a bandwidth hit on the convolutions.

For networks involving only convolutions, however, the problem remains. Since our

method in its current form does provide significant benefits for Feed Forward and Recurrent

networks, we leave the study of distributed-auto-differentiation for convolutional layers as

future work.

Backflow to Private Encoders Because our method focuses on the underlying statistics

used for computing gradients in AD,

Effective Gradient Rank for Introspection and DNN Dynamics Although our initial

approach was to use the unique structure provided to us by AD to compute an accurate
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low-rank approximation, the apparent dynamics this approach reveals beg for further em-

pirical and theoretical analysis. The Singular Value Decomposition has been used to study

the dynamics of training in networks with linear activations [81], and it is possible that

distributed models may be provided with such an analysis for free when using our method.

By opening the black box of AD, we may get a peek into the black box of deep learning

for free.

4.5 Conclusions

In this work, we took a step back from standard gradient-based methods for distributed

deep learning, and presented a novel algorithm for distributed auto-differentiation (dAD).

The insight that the intermediate outer product factors gathered by AD can be transferred

instead of the full gradient provides a significant bandwidth reduction over full-gradient

methods like dSGD without a loss in performance. Furthermore, we are able to show that

the structure of AD can be further capitalized on to reduce bandwidth again by half, since

for standard backpropagation, the global delta values can be back-propagated through the

network as long as the activations are still shared. Finally, we push dAD even further by

exploiting the explicit outer-product structure to obtain low rank approximations for the

gradient in terms of low-rank versions of the intermediate statistics. With this, rank-dAD

provides an intriguing method for adaptively reducing bandwidth where the chosen rank

is an upper-limit on communication. We are also able to analyze how the effective rank

of the gradient changes during training, and thus obtain introspective information about

the learning dynamics. It has been our goal to illustrate that auto-differentiation provides

a rich landscape for further exploration into distributed deep learning. The reduction in

bandwidth, intuitive algorithms, and competitive performance we have demonstrated here

represent the first of potentially many benefits available to distributed machine learning

practice and theory.
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CHAPTER 5

LOW-RANK LEARNING BY DESIGN: THE ROLE OF NETWORK

ARCHITECTURE AND ACTIVATION LINEARITY IN GRADIENT RANK

COLLAPSE

5.1 Introduction

Deep Neural Networks (DNNs) continue to achieve state-of-the-art performance on a num-

ber of complex data sets for a diverse array of tasks; however, modern DNN architectures

are notoriously complex, with millions of parameters, nonlinear interactions, and dozens

of architectural choices and hyper-parameters which can all significantly affect model per-

formance. Internal complexity and a lack of thorough theoretical groundwork has given

DNNs a reputation as “black box” models, where architectures may excel or fail on a given

problem with relatively little indication how their structure facilitated that performance.

Engineering a neural network that works well on a particular problem can often take the

form of fairly arbitrary and exhaustive model tweaking, and even in cases where researchers

systematically perturb particular settings, the primary explanations of performance come

down to observing minor changes in performance evaluation metrics such as loss, accu-

racy/precision, dice-scores or other related metrics. In this work, we examine a particu-

lar emergent phenomenon in deep neural networks—the collapse of gradient rank during

training; however, we take a theory-first approach, examining how bounds on gradient rank

collapse appear naturally and deterministically as a result of particular architectural choices

such as bottleneck layers, level of nonlinearity in hidden activations, and parameter tying.

This work is part of a growing body of theoretical research studying the dynamics

of learning in deep neural networks. Beginning from first principles, Andrew Saxe pro-

vided a foundational work on exact solutions to nonlinear dynamics which emerge in fully-
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connected networks with linear activations [81], which has inspired a body of related work

on simple networks with various architectural or learning setups such as parent-teacher in-

teractions [194], online learning and overparametrization [195], and gated networks [196].

This work on theory and dynamics has also been extended to studying high-dimensional

dynamics of generalization error [197], emergence of semantic representations [82], and

other phenomemon which can be first characterized mathematically and observed empiri-

cally. Our work in this paper follows this tradition in the literature of beginning with math-

ematical principles which affect learning dynamics in simple networks, and demonstrating

how these principles emerge in practical scenarios.

An additional related body of work studies the phenomemon of Neural Collapse [87,

198], in which deep classifier neural networks converge to a set of rigid geometrical con-

straints during the terminal phase of training, with the geometry of the output space de-

termined exactly by the number of classes (i.e., the rank of the output space). This neural

collapse phenomenon has been thoroughly studied as emerging in constrained [199] and

unconstrained feature settings [88, 89, 200], with various loss functions [90, 91, 201],

under transfer learning regimes [202], class imbalance scenarios [203], and exemplifying

affects on the loss-landscapes [92]. This growing body of work suggests that geometric

constraints during learning influence a number of desirable and undesirable deep learning

behaviors in practice.

Like the works on neural collapse, we are interested in geometric constraints to learn-

ing; however, we follow the example of Saxe et al. and begin our theoretical examination

with simple linear networks, showing how we can expand on simple constraints of batch

size (which has been discussed previously elsewhere [204]) to constraints dependent on a

number architectural features such as bottlenecked layers, parameter-tying, and level of lin-

earity in the activation. Our work invites the study of network-wide geometric constraints,

and while we do not dive into training dynamics in this work, we are able to set a stage

which bounds dynamics, hopefully clearing the way for further dynamical analysis in the
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style of Saxe, Tishby and others.

Finally, our work studying the affect of a particular nonlinear activation and its level of

linearity stands out from the existing work on purely linear networks and neural collapse

in linear classifiers. Although nonlinear activations introduce some complexity to analy-

sis, we can draw from some previous work on analyzing the spectrum of ReLU activations

[205], extending the analysis in that work to its natural consequences with Leaky-ReLU ac-

tivations and even deriving explicit bounds for numerical estimation of rank which require

only singular values of the underlying linear transformations.

Our derivation of upper bounds on gradient dynamics during training also has implica-

tions for distributed models which utilized low-rank decompositions for efficient communi-

cation. For example, PowerSGD [80] and distributed Auto-Differentiation [78] compute a

low-rank decomposition of the gradient prior to transfer between distributed data-collection

sites. Our theoretical results here can help to provide insights into how high of a rank may

be needed to preserve model performance between the pooled and distributed cases, or how

much information may be lost when a lower-rank decomposition is used for communication

efficiency.

Our primary results in this work are theoretical; however, we perform a number of em-

pirical verifications and demonstrations which verify our theoretical results and study the

implications of our derived bounds on gradient rank for various archictural design choices.

In sum, the contributions here include:

1. an upper bound on the rank of the gradient in linear networks;

2. upper bounds on the rank of the gradient in linear networks with shared parameters,

such as RNNs and CNNs;

3. extension of previous work on ReLU Singular Values to study the effect of Leaky-

ReLUs and the level of linearity on the upper bound of rank;

4. empirical results on numerical data which verify our bounds and implicate particular
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architectural choices;

5. empirical demonstration of theoretical implications on large-scale networks for Com-

puter Vision and Natural Language Processing;

6. natural extensions in the future work to rank dynamics during training, explicit con-

nections to neural collapse, and implications for rank effects of other architectural

phenomena such as dropout layers, batch norms, and more.

5.2 Theoretical Methods

5.2.1 Reverse-Mode Auto-Differentiation

We will define a simple neural network with depth L as the operator Φ({Wi}Li=0, {bi}Li=0, {ϕi}Li=0) :

Rm → Rn. This is given in as a set of weights {W1, . . . ,WL}, bias variables {b1, . . . ,bL},

and activation functions {ϕ1, . . . , ϕL}, where each function ϕi : Rn → Rn is an element-

wise operator on a vector space.

Let x ∈ Rm be the input into the network and let y ∈ Rn be a set of target variables.

Then we define zi as the internal activations and ai as the external activations at layer i

given with the recursive relation:

z0 = x

a0 = z0

zi = Wiai−1 + bi

ai = ϕi(zi)

To define the sizes of the hidden layers, we have Wi ∈ Rhi−1×hi , with h0 = m and

hL = n. We note then that zi, ai are column vectors in Rhi .

Let L(y, aL) : Rn → R be a loss function which measures the error of the estimate

of y at aL. The gradient update for this loss, computed for the set of weights Wi can be
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written as the outer-product

∇Wi
= ai−1δ

⊤
i

where δi is the partial derivative of the output at layer i w.r.t its input. At the output layer

L, δL is computed as

δL =
∂L
∂aL

⊙ ∂ϕL

∂zL

and subsequent δi are computed as

δi = δi+1Wi+1 ⊙
∂ϕi

∂zi
.

These definitions are all given for x as a column vector in Rm; however, for standard

batch SGD we compute these quantities over a batch of N samples. If we rewrite the

variables x, y, zi, ai and δi as matrices X ∈ RN×m, Y ∈ RN×n, Zi,Ai,∆i ∈ RN×hi . The

gradient can then be computed as the matrix-product

N∑
k

an,i−1δ
⊤
n,i = A⊤

i−1∆i.

5.3 Theoretical Results

5.3.1 Bounds on Gradients in Linear Networks

First consider the set of neural networks where ϕi(x) = x is the identity operator ∀i. These

networks are called ”linear networks” or equivalently ”multi-layer perceptrons” (MLP), and

Zi = Ai,∀i. For these networks, the rank of the gradients has an exact bound. Trivially,

for a given gradient ∇Wi
, the rank is

rank(∇Wi
) = rank(Z⊤

i−1∆i) ≤ min{rank(Zi−1), rank(∆i)}.

Since in linear networks we can easily compute Zi = X
∏i

j=1Wj , we use a similar
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rule as for the gradient to compute the bound

rank(Zi) ≤ min{rank(X), rank(W1), . . . , rank(Wi)}.

For the adjoint variable ∆i we can use the fact that ∂ϕ
∂Zi

= 1 where 1 is a matrix of ones

in RN×hi to derive a bound on the adjoint as

rank(∆i) ≤ min{rank(Wi), rank(Wi+1), . . . , rank(W)L, rank(
∂L
∂ZL

)}.

Therefore, the bound for the gradient rank is

rank(∇Wi
) ≤ min{rank(Zi−1), rank(∆i)}

≤ min{rank(X), rank(Wi), rank(Wi+1), . . . , rank(W)L, rank(
∂L
∂ZL

)}

(5.1)

5.3.2 Bounds on Gradients in Linear Networks with Parameter Tying

We will begin our analysis with recurrent neural networks and Back-Propagation through

Time (BPTT) [206].

Recurrent Layers

Let X ∈ RN×n×T be the N samples of an n-dimensional variable over a sequence of

length T (over time, for example). We will set an initial hidden state for this layer as

Hi,0 ∈ RN×hi .

Let fi : RN×hi−1×T → RN×hi×T be the function given by a linear layer with a set of

input weights U ∈ Rhi−1×hi and a set of hidden weights V ∈ Rhi×hi . The output of this

layer is computed as the tensor

fi(X ) = {Ht,i}Tt=1 = {ϕi(Zt,i)}Tt=1 = {ϕi(XtUi +Ht−1,iVi)}Tt=1.
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Supposing the error i feeds into another recurrent layer, the error on the output (which

is used for the gradients of both U and V) is thus computed as the tensor

Di = {∆t,i}Tt=1 =

{
(∆t,i+1Ui+1 +∆t+1,iVi)⊙

∂ϕi

∂Zt,i

}T

t=1

where we have ∆T+1,i = 0 for convenience of notation. In the case where the next layer

in the network is not recurrent (for example if it is a linear layer receiving flattened output

from the RNN), we can set ∆t,i+1 to be the elements of ∆i+1 which correspond to each

timepoint t.

The gradients for Ui and Vi are then computed as the sum over the products of each

element in the sequence

∇Ui
=

T∑
t=1

X⊤
t,i∆t,i ∇Vi

=
T−1∑
t=0

H⊤
t,i∆t,i

Fully linear RNNs are not typically implemented in practice; however, for the purpose

of demonstrating how parameter-tying can improve with parameter-tying, the analysis may

still prove helpful. The first thing to notice is that even for as small as T = 2, we reach

the potential for full-rank gradients quite quickly. Even in the degenerate case when the

batch size is N = 1, ∇Ui
and ∇Vi

may become rank T . Thus, the analysis of rank no

longer depends much on the architecture beyond the number of timepoints chosen, and

parameter-tying can affect rank-collapse that emerges from low-rank product bottlenecks

in other layers. Rather, it will become of interest to look at correspondences between input

such as temporal correlation in order to provide a clearer picture. We will leave this for

future work.

Convolutional Layers

Our derivation of bounds on the gradient rank of convolutional layers will follow much of

what was derived for RNNs. The primary difference will appear in the number of steps
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over which gradients are accumulated, and their relationship to image size, stride, kernel

size, padding, etc.

Suppose we are working on a convolution of dimension m. If we let N denote the size

of a given batch, and let Cin, Cout be the input/output channels, and let win ∈ Nm
+ be a list

of image dimensions (such as Height and Width for a 2d image). Then the input image to

the convolution is denoted as a tensor X ∈ RN×Cin×win,1×win,2×···×win,m .

Suppose we are performing a convolution with a kernel sizes k ∈ Nm
+ , dilations d ∈

Nm
+ , padding p ∈ Nm

+ , and stride s ∈ Nm
+ . The weight tensor for this convolution is denoted

as W ∈ RCout×Cin×k1×k2×···×km . The output of this convolution is thus computed as the

tensor Y ∈ RN×Cout×wout,1×wout,2×···×wout,m:

Yi,j,... =

Cin∑
k=1

Wi,k,... ⋆ Xi,k,...

where ⋆ is the m-dimensional cross-correlation operator.

Following reverse-mode auto-differentiation for m-dimensional convolutions, the gra-

dient of W is computed as a convolution between the input X and the adjoint from the

backward pass ∆:

∇W =
N∑
i=1

{X ⋆∆}i

It is clear that with linear activations, even if X and ∆ are low-rank, the rank of this

gradient is accumulated over the cross-correlation operator ⋆ (as well as over N , in a similar

way to for linear layers). It becomes apparent that like for RNNs, we are accumulating over

the sequence of
∏d

i=1 wout,i many patches, where wout,i is the size of the output in the ith

dimension.

For convolutional layers, this can be explicitly computed as
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wout,i =

⌊
win,i + 2pi − di × (ki − 1)− 1

si
+ 1

⌋

if we let B be the linear bound computed in section 2.3, then the bound on the rank of

the gradient is thus

rank(∇Wi
) ≤ B

m∏
i=1

⌊
win,i + 2pi − di × (ki − 1)− 1

si
+ 1

⌋
(5.2)

Intuitively, this means the bound will shrink as the input image size and padding shrinks,

and will shrink as the stride, dilation and kernel size increase.

5.3.3 Bounds on Gradients in Leaky-ReLU Networks

The bounds we provide on gradient rank in networks with purely linear activations builds

off intuitive principles from linear algebra; however, the introduction of nonlinear acti-

vations confuses these notions. For a general nonlinear operator ϕ, the notion of singular

values which we obtain from linear algebra does not hold. Even though we can compute the

SVD of the matrix ϕα(Z) for a given layer with internal activations Z, little can be initially

said about the relationship of the this decomposition to the linear transformations which

generated Z. Thus, although we can still empirically compute the rank of the resulting

matrix from the nonlinear transformation, it is not initially clear how rank-deficiency will

propagate through a network as it will in the fully linear case. In this section, we show how

Leaky-ReLU activations with different levels of nonlinearity affect numerical estimates of

rank. In supplementary material, we also explore theoretical connections to previous work

on so-called ”ReLU Singular Values”, which also follow our derived bounds.
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Numerical effect of Leaky-ReLUs on Rank

In this section, we analyze the numerical effect of Leaky-ReLU nonlinearities on the sin-

gular values of the internal activations Zi = Ai−1Wi. Our tactic will be to observe how

the slope α can push the singular values of ϕα(Zi) above a numerical threshold used for

estimating rank. As a choice of threshold, we use ϵ·maxi σi, where ϵ is the machine-epsilon

for floating-point calculations on a computer. This threshold is utilized in most modern li-

braries which can perform rank estimation, including PyTorch [179] and Tensorflow [207].

We then say that a singular value σk does not contribute to our estimation of rank if

σk < ϵ ·max
i

σi (5.3)

Let Dα(Z) ∈ Rh×h be the matrix with entries corresponding to the linear coefficients

from the Leaky-ReLU activation of Zi = XWi for W ∈ Rh−1×h. Leaky-ReLU activations

can be written as the Hadamard product

ϕα(Zi) = Dα ⊙ Zi (5.4)

From Zhan [208], we have the inequality for the singular values of the Hadamard prod-

uct:

k∑
i=1

σi(Dα ⊙ Zi) <
k∑

i=1

min{ci(Dα), ri(Dα)}σi(Zi) (5.5)

where c1(Dα) ≥ c2(Dα) ≥ · · · ≥ ch(Dα) are the 2-norm of the columns sorted in decreas-

ing order, and ri(Dα) are the 2-norm also in decreasing order.

We can say that Dα ⊙ Z will remain numerically rank-deficient up to rank k when

min{ck(Dα), rk(Dα)}σk(Z) ≤ ϵσ1(Dα ⊙ Z) (5.6)
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We then have two cases: 1) σ1(Dα ⊙ Z) ≤ σ1(Z) or 2) σ1(Dα ⊙ Z) > σ1(Z). If

case 1) holds, the Hadamard product will remain rank deficient if the euclidean length of

the corresponding column or row of Dα is less than or equal to ϵσ1(Z)/σk(Z), and will

increase otherwise.

Case 2 is best analyzed by a choice of Z which saturates σ1 at the bound in (5.7), since it

cannot grow anywhere beyond that bound. If we have σ1(Dα⊙Z) = min{c1(Dα), r1(Dα)}σ1(Z),

σk will always contribute numerically to the rank when the corresponding column/row

norm at k equals

ϵmin{c1(Dα), r1(Dα)}σ1(Z)/σk(Z). (5.7)

Because we are dealing with Leaky-ReLU activations in particular, the 2-norm of

ci(Dα) and ri(Dα) take on a particular closed form. Indeed, we have

ci(Dα) =
√

N−α2 +N+ ri(Dα) =
√

M−α2 +M+

where N− is the number of rows in column i which fall into the negative domain of the

Leaky-ReLU activation, and N+ is the number of rows which fall into the positive domain.

Similarly, M− and M+ count the number of columns in the negative and positive domains in

row i. In other words, we can exactly determine the threshold at which a singular value will

fail to contribute to numerical estimation of rank if we know the non-negative coefficient

and can count the number of samples which reside in particular regions of the activation

function’s domain.

We can use a similar kind of analysis as in section 3.3.1 to derive a bound on the rank

for the partial derivative of the Leaky-ReLU activation on the output. As we mentioned in

that section, the analysis can extend trivially to any piecewise linear function, and indeed

the derivative of a Leaky-ReLU is piecewise linear.

Let Dα(Z) ∈ Rh×h be the matrix with entries corresponding to the linear coefficients

from the Leaky-Relu activation applied to internal activation Zi = XWi. The partial
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derivative w.r.t to the output can be written as the hadamard product

ϕ′
α(Zi) = Dα ⊙ 1h×h (5.8)

where 1h×h is an h× h matrix of ones.

From our derivation in section 3.3.1, we can say that Dα⊙1h×h will remain numerically

rank-deficient according to the bound

min{ck(Dα), rk(Dα)} ≤ ϵmin{c1(Dα), r1(Dα)}σ1(Zi)/σk(Zi) (5.9)

We note that 1h×h is rank-1 with σ1 = h and σk ≤ ϵh. If we suppose this bound

is saturated, the bound depends primarily on the quantity min{c1(Dα), r1(Dα)}, and will

loosen somewhat as the precision of σk shrinks it toward 0.

Connection to ReLU-Singular Values

One initial theoretical answer to analyse particular nonlinearities involves extending the no-

tion of singular values to certain nonlinear functions which are locally linear, such as ReLU

or Leaky-ReLU activations [205]. For the nonlinear operator ϕα(Z) = LeakyReLUα(Z),

where α ∈ [0, 1] controls the slope of the activation when Z < 0. We note that when

α = 0, this is equivalent to a ReLU activation and when α = 1 it is equivalent to a Linear

activation.

Following the work in [205], for a matrix Z ∈ Rm×n the kth “Leaky-ReLU Singular

Value” is defined for the operator ϕα(Z) as

sk(ϕα(Z)) = min
rankL≤k

max
x∈B

∥LeakyReLUα(Zx)− LeakyReLUα(Lx)∥. (5.10)

In [205], the extension of the notion of ReLU singular values to Leaky-ReLUs carries
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naturally; however, for completeness, we have included Leaky-ReLU-specific versions of

each of the proofs from that work in the supplement. Among these results, we have the

following lemma:

Lemma: Let ϕα(Z) = LeakyReLUα(Z) for Z ∈ Rn×m, then

sk(ϕα(Z)) ≤ σk(Z) (5.11)

In other words, the Leaky-ReLU singular values will be bounded above by the singular

values of the underlying linear transformation Z. It follows then that as we increase α

along the interval [0, 1], the analogous notion of ” rank (the number of non-zero values

of sk) will converge converge upward to the linear rank of Z, and our boundaries will still

hold.

5.4 Empirical Methods

We perform two broad classes of experiment: simple verification, and large-scale demon-

stration. In the first class of experiments, we show how the bounds derived in our the-

oretical results appear in simple, numerical experiments, where it is easy to verify how

particular architectural choices and level of nonlinearity affect the bound of the gradient

rank. In the second class of experiments, we perform larger-scale experiments and demon-

strate how our derived bounds can also affect these models in practice. These latter class

of experiments utilize models which include modules such as Drop-Out, BatchNorms, and

LayerNorms. We do not explore these additional modules theoretically in this work, even

though they may have an influence on gradient rank [209]; however, we believe this allows

for a productive direction for future theoretical and empirical work.

In both styles of experiment, the primary architectural elements we demonstrate when

possible are: 1) bottleneck layers, i.e., layers within a network which have a much smaller

number of neurons than their input and output spaces, 2) length of sequences in parameter
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Table 5.1: The Data Sets evaluated as part of our empirical verification. For space, only the
Gaussian and Sinusoid data sets are included in the main body of text, and the remaining
data sets are included in the supplementary material.

Dataset # Samples Subspace Type
Gaussian 16384 RN×m Numeric
Sinusoids 16384 RN×m×T Numeric
MNIST 6× 104 RN×H×W Image

CIFAR10 6× 104 RN×H×W Image
TinyImageNet 105 RN×3×H×W Image

WikiText > 108 RN×|V |×T Text
Multi30k > 3× 105 RN×|V |×T Text

Table 5.2: The models evaluated as part of our empirical verification. For space and demon-
strating key features, we include results from the Fully Connected Network, Elman RNN,
and ResNet16 in the main text. Additional model architectures are included in the supple-
ment.

Model Datasets

MLP Gaussian
Elman RNN Sinusoids

BERT WikiText
XLM Multi30k

ResNet16 MNIST, CIFAR10, ImageNet
VGG11 MNIST, CIFAR10, ImageNet
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tying, 3) low-rank input/output spaces, 4) level of non-linearity in hidden activations.

For the sake of numerical verification, we implement auto-encoding networks on two

numerical datasets. For our first data set, we generate an m-dimensional gaussian X ∈

RN×m as x ∼ N (µi,Σi) We then use a fully-connected network as an auto-encoder to

reconstruct the random samples.

Our second kind of numerical data is generated by sine waves of the form xi,j =

ai,j sin(bi,jt) + ci,j, where we sample the parameters ai,j, bi,j, ci,j for a particular sam-

ple i and dimension j independently from their own univariate Gaussian distributions

ai,j ∼ N (µa, σa), bi,j ∼ N (µb, σb), ci,j ∼ N (µc, σc). We choose t to be T -many points

in the interval [−2π, 2π]. We then used an RNN with Elman Cells, GRUs and LSTMs to

reconstruct the input sequence, and demonstrate how four architectural principles affect

our derived bound gradient rank.

For our larger-scale experiments, we choose two popular data sets from computer vi-

sion and natural language processing. We choose Cifar10 [210] and a Tiny-ImageNet (a

Subset of ImageNet [211]) for computer vision, and we choose WikiText [212] for natural

language processing. Because our empirical analysis requires repeated singular value de-

compositions and multiple architectural tweaks, we avoid overly long experiment runtimes

by using relatively smaller-sized versions of popular network architectures which can fit

alongside batches on single GPUs. In terms of computer-vision architectures, we utilize

ResNet16 [213] and VGG11 [214], and for natural language processing, we utilize the

BERT [215] and XLM [216] transformers for Language Modeling and Machine Transla-

tion respectively. Again, since we are interested primarily in rank as initially bounded by

architecture, we do not use pretrained weights, and we only train models for a maximum

of 100 epochs.

For both numerical verification and large-scale experiments, all models were trained

using k = 5-fold cross validation, with 4 uniquely initialized models on each fold for a total

of 20 models per result. The rank metrics in the following section are thus accumulated
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Figure 5.1: For a 3-layer Linear FC network, we plot the mean rank of gradients, activation,
and deltas change with respect to the size of a neuron bottleneck in the middle layer. The
axis axis provides the name of the module, with depth increasing from right to left. In each
panel, green, blue and orange bars represent the estimated rank of gradients, activations
and deltas respectively. Black vertical lines on a bar indicate the standard error in the mean
estimated rank across folds and model seeds.

over these 20 runs.

5.5 Empirical Results

5.5.1 Numerical Verification

Hypothesis 1: Bottleneck layers reduce gradient rank throughout linear networks. The

bound computed in (5.1) suggests that reducing the size of a particular layer in a fully-

connected network will reduce gradients throughout that network, regardless of the size

of the input activations or adjoints computed at those layers. In Figure 5.1, we provide

a demonstration of this phenomenon in a simple fully-connected network used for recon-

structing gaussian mixture variables. In Figure 5.1 (left), we provide the numerical estimate

of the gradient rank at each in a 3-layer network with each layer having the same dimension

as the input (d = 128). In Figure 5.1 (right), we provide the same rank estimates withe the

middle layer being adjusted to contain only 16 neurons. We clearly see that our bound in

(5.1) holds, and we can see that the two layers preceding the bottleneck have their rank

bounded by the adjoint, and the following layers are bounded by activation rank.

Hypothesis S1: Low-rank input/output spaces systematically bound gradient rank. The

remaining terms in the bound in (5.2) show that gradient rank is bound by the rank of
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the inputs and the rank partial derivative of the loss function (i.e., the rank of the output

space). In Figure 5.2, we show the computed gradient rank on a fully-connected network

with three layers of 128 neurons each, trained to reconstruct a full-rank (128-dim) gaussian

input (panel 5.2a) in contrast to a model trained to reconstruct a low-rank (16-dim) gaussian

embedded in a higher-dimensional (128-dim) space (panel 5.2b). Indeed, in panel 5.2c we

see that any linear model which receives the low-rank embedded input has gradients which

are bounded entirely by the rank of the input space.

Hypothesis 2: Parameter-Sharing such as in BPTT restores gradient rank according to

the number of points in the accumulated sequence In §5.3.2 we discussed how parameter-

tying restores gradient rank in models which accumulate gradients over sequence, such as

RNNs using BPTT (§5.3.2) or CNNs (§5.3.2) accumulating over an image. Indeed, the

number of points over which back-propagation is performed will affect how much of the

gradient rank is restored in the presence of a bottleneck. In Figure 5.3, we demonstrate the

gradient rank in an 3-layer Elman-Cell RNN [217] trained to reconstruct high-dimensional,

sinusoidal signals. We introduce a severe bottleneck in the second RNN, constraining its

hidden units to 2, with the other RNNs having 128 hidden units each. We demonstrate how

the introduced gradient bottleneck is ameliorated in the adjacent layers according to the

number of timepoints included in truncated BPTT over the sequence. With a maximum of

50 timepoints, the bottleneck can at most be restored to a rank of 100.

Hypothesis 3:Using the derivation in §5.3.3, we can compute the bound over which

an estimated singular value will contribute to the rank, without computing the eigenval-

ues themselves One of the primary empirical upshots of the theoretical work in §5.3.3 is

that using only the singular values of the underlying linearity and a count of how samples

contribute to particular areas of the domain of our nonlinearity, we can compute the bound

over which singular values will cease to contribute to the estimated rank. In Figure 5.4 we

construct a low-rank random variable by computing the matrix product of two low-rank

gaussian variables. We then compute the estimated eigenvalues after applying a Leaky-
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Figure 5.3: For a 3-layer Elman-Cell RNN, we show how mean rank of gradients, activa-
tion, and deltas change with respect to the number of timepoints used in truncated BPTT.
The x axis groups particular modules, with depth increasing from right to left. Each colored
bar shows the mean estimated rank over multiple seeds and folds using a different sequence
length for truncated BPTT.

Figure 5.4: A numerical verification of the derived boundary over which a given eigenvalue
computed on a Leaky-ReLU activation σk will cease to contribute to the rank. In each
panel, we plot how the change in estimated singular values as solid curves, with color
corresponding to order of initial magnitude. We plot the rank boundary as a function of
estimated largest eigenvalue as a red dotted line, and the rank boundary using (5.6) with a
blue dotted line.

ReLU nonlinearity. We then estimate the bound to rank contribution first by computing it

using the maximum estimated singular value, and then using the boundary we derived in

(5.6) which does not require singular values. This empirical demonstration indicates that

this derived bound is equivalent to numerical boundary on singular value contribution to

rank computed from the output of the leaky-ReLU. This demonstrates that our theoretical

result allows for exact prediction of when singular values will no longer contribute to rank,

using only the singular values of the input to the activation function.

Hypothesis 4:The negative slope of the Leaky-ReLU activation is related to the amount
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Figure 5.5: For a 5-layer (6 weight) FC network with Leaky-ReLU activations, we show
how mean rank of gradients, activation, and deltas change with respect to the negative slope
α of the noninearity. Layer sizes are plotted on the x axis with the depth increasing from
left to right. We enforce a bottleneck of 2 neurons in the central layer. For each module,
we estimate the rank and provide a colorbar corresponding to the level of nonlinearity
increasing in the range of [0,1].

of gradient rank restored. Although our theoretical analysis in §5.3.3 was given primar-

ily in terms of how Leaky-ReLU contributes to the rank of the input activations, it stands

to reason that the resulting product of activations and adjoint variables would be affected

by the negative slope as well. In Figure 5.5, we implement a 3-layer fully-connected net-

work for reconstruction of Gaussian variables, and we compute the rank of the gradients

changing as a function of the slope of the Leaky-ReLU activation. We use a network with

128 neurons at the input and output layers and a 2-neuron bottleneck layer. Our results

indicate that pure ReLU activations do not fully restore gradient rank in either direction of

back-propagation; however, the negative slope does increase estimated rank close to full-

linearity. As the activations approach linearity, the rank returns to the gradient bottleneck.

5.5.2 Large-scale demonstration

In this section, we include results on larger-scale networks and problem settings. Our goal

is to illustrate how architectural choices can affect rank not only in small models, but also

in modern architectures. These results highlight the relevance of our theoretical result to

the deep learning community at large.

ImageNet with ResNet18: In Figure 5.6, we illustrate the effect of increasing the input

116



image size on the rank of the gradient in the ResNet18 architecture. In each panel the

image size increases from top to bottom, and as expected smaller image sizes produce

smaller ranks.

Additionally, we estimated the effect of artificially introduced Leaky-ReLU activations

with different levels of α; however, we observed little noticeable effect as long as the input

image was large.
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ImageNet with VGG11: In Figure 5.7 we illustrate the effect of increasing the input

image size on the rank of the gradient in the ResNet18 architecture. In each panel the

image size increases from top to bottom, and as expected smaller image sizes produce

smaller ranks.
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WikiText/M130k with BERT/XLM: We have included a demonstration of decreasing

the sequence length in two large-scale NLP datasets (WikiText and Multi30K) for the

BERT architecture with standard pretraining and XLM pretraining. In Figure 5.8 we in-

clude the estimated rank of the first two and last two linear layers for BERT applied to the

WikiText data set. The rank for all other layers and for the4 XLM/Multi30k application

are included in separate PDFs along with this supplement. In general we do not see much

variation between linear layers in each architecture, except for near the input (layers 73,72),

in which length 1 sequences collapse the rank of the gradients down to 1.

5.5.3 Phenomena Study of Other Nonlinear Activations

5.6 Discussion

Our theoretical bound on gradient rank in linear networks provides a number of startling

insights. As we empirically demonstrate in Figure 5.1, linear networks with bottleneck lay-

ers are constrained to low-rank learning dynamics, where the rank cannot exceed that of the

smallest number of neurons in the network. Beyond the somewhat artificial introduction of

bottlenecked layers, these constraints also emerge when dealing with low-dimensional in-

put spaces (even when they are embedded in higher-dimensional spaces like in Figure 1 in

supplement). Perhaps more startling is the realization that in supervised learning tasks with

relatively few output variables (such as only 10 neurons for 10 classes in Cifar10/MNIST,

which can be seen in the rank of the linear classifier in Figures 2+3), the gradient rank

throughout the entire network will not exceed that number of variables. When using linear

activations, this finding suggests that the ramifications of neural collapse to input layers

beyond the terminal linear classifier, with Neural Collapse playing a role at all phases of

training, not just during the terminal phase. Since our analysis in this work is on architec-

tural constraints which will affect dynamics during all training, further work studying the

actual gradient dynamics and their effect on the weights during training is needed to fully

flesh-out the connection to neural collapse.
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Figure 5.8: Illustration of the rank of the gradient at each layer in the BERT architecture
used for language modeling on the WikiText2 data set. Each panel shows the effect of
increasing sequence length (increasing from right to left) on the rank, illustrating that larger
sequence lengths. provide more accumulation of the gradient.
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Through our analysis of linear networks, we also provide an explanation for how parameter-

tying mitigates the tight constraints on rank which may emerge due to bottlenecks. In Fig-

ures 5.4 and 5.5 our empirical verification demonstrates that when low-rank gradients com-

puted at each point in the sequence, rank may be partially restored; however, the level to

which rank is restored depends on the length of the sequence. The implication for networks

with parameter tying is that aggressively truncated sequences in parameter-tied networks

will still be affected by low-rank gradient dynamics.

Our theoretical result identifying how to compute the numerical boundary on rank for

Leaky-ReLU networks provides a novel theoretical extension to how nonlinear activations

can affect learning dynamics. Additionally, the ability to control the negative slope of the

Leaky-ReLU activations allows us to demonstrate how numerical precision can affect the

bounds. At the end of our analysis; however, we are left with a boundary that is highly data-

dependent, and as we show in Figure 5.5 even fully nonlinear ReLU activations may lower

the numerical estimation of rank. This remaining data-dependence in our theory suggests

that there is only so much insight to be gained from architectural choice alone, and future

work will require analysis of how particular input and output spaces may impose particular

boundaries or dynamics on gradient rank. This input/output analysis may also provide

deeper insights and tighter bounds the affects of nonlinear activations and parameter tying

in particular, with highly correlated or sparse input and output spaces potentially affecting

bounds and dynamics.

One limitation of our analysis in this work is that we have purposely avoided relating

the emergence of low-rank phenomenon to model performance on particular tasks. Our

reason for shying away from this discussion is that model performance is closely related to

dynamics throughout the entire training phase, and our theoretical results apply to networks

at any phase of training, and as such are agnostic to whether a model performs well or not.

Our work here provides ample groundwork for analyzing the dynamics within our derived

boundaries, and so we leave the connection of gradient rank collapse and performance as
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future work which can focus on correspondences between collapse and dynamics.

An additional constraint of our analysis here is our restriction to analyzing linear and

Leaky-ReLU networks. Our primary reason for doing this is that with minimal theoretical

pretext, Linear and Leaky-ReLU networks call be discussed within the machinery of linear

algebra. Other nonlinear activations such as the hyperbolic tangent, logistic sigmoid, and

swish require significant theoretical pretext before the linear-algebraic notions of singular

values and rank can be applied. Future work may be able to draw on mathematical fields of

functional analysis (in the style of [205]), algebraic topology [218], or analysis of linearized

activations (as is done in [219]) to provide theoretical frameworks for studying low-rank

dynamics. We leave this as a substantial opening for future work.

5.7 Conclusion

In this work, we have presented a theoretical analysis of gradient rank in linear and Leaky-

ReLU networks. Specifically, we have shown that intuitive bounds on gradient rank emerge

as direct consequences of a number of architectural choices such as bottleneck layers, pa-

rameter tying, and level of linearity in hidden activations. Our empirical verification and

demonstration illustrate the computed bounds in action on numerical and real data sets.

The bounds we provide connect simple principles of architectural design with gradient dy-

namics, carving out the possible space in which those dynamics may emerge. Our work

thus serves as a groundwork for continued study of the dynamics of neural spectrum col-

lapse and gradient dynamics, not only in linear classifiers, but in many classes of network

architecture.
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CHAPTER 6

AUTOSPEC: SPECTRAL STATISTICS IN AUTO DIFFERENTIATION FOR

INTROSPECTION AND IDENTIFICATION OF GROUP DIFFERENCES IN

DEEP NEURAL NETWORKS LEARNING DYNAMICS

6.1 Introduction

Neural networks, which have had a profound effect on how researchers study complex phe-

nomena, do so through a complex, nonlinear mathematical structure which can be difficult

to interpret or understand. This obstacle can be especially salient when researchers want

to better understand the emergence of particular model behaviors such as bias, overfitting,

overparametrization, and more. In certain contexts such as Neuroimaging, the understand-

ing of how such phenomena emerge is fundamental to preventing and informing users of

the potential risks involved in practice.

In recent years, a broad library of “introspection” methods have emerged to mitigate

the difficulty of straightforward interpretation [220, 221, 222, 223, 224, 225]. In particular,

most state of the art research on DNN interpretation has utilized post-hoc analysis of model

gradients. For example, the popular integrated gradients measure [220], saliency maps

[225], and other gradient-based methods [222, 223] have proved popular in applications

to convolutional neural networks as they provide simple spatial visualizations which make

for easy building of intuition. While these methods are extremely popular, the resulting

visualizations tend to be noisy and inconsistent [226, 227, 228, 229], and recent research

in the field has attempted to mitigate these limitations, for example by using refining maps

based on region attribution density [230, 231], providing an adaptive interpolation path

[232], or imposing geometric constraints on produced maps [233, 234].

While post-hoc gradient analysis techniques can be useful for interpretation on pre-
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trained models, these methods are not useful for evaluating training dynamics; they can

explain where a model currently is, but now how it arrived there. While theoretical analyses

of dynamics such as the one we developed in chapter 5 and related analyses [81, 82] provide

some guidance to describing model dynamics, new empirical metrics and visualizations

are also important for building intuition about model behavior while also accumulating

evidence for further theoretical interpretation.

One existing method which empirically describes model dynamics is the information-

plane method [83, 84, 235], in which the mutual information between layer weights and

the input and output spaces is computed and visualized during training. While this method

provides fascinating visualizations of dynamic behavior, the general interpretation of the

dynamics adhering to the information bottleneck principle [236] is not immediately clear

[85] and can be sensitive to architectural choices or the empirical method used to estimate

mutual information.

In this chapter, we present a novel empirical method for analyzing model learning dy-

namics, which builds off of our theoretical work studying gradient rank in chapter 5. We

call our method AutoSpec, as it utilizes unique opportunities within auto-differnetiation to

analyze model learning dynamics. While we previously showed that model architecture

can impose theoretical limits on gradient rank, there is more that can be observed at work

within auto-differentiation. Namely, we show that the singular values of the gradient and

of the component matrices which are used to compute it can be studied they dynamically

evolve during model training. Furthermore, because we can analyze gradients on-the-fly

within the auto-differentiation mechanism, we have the unique opportunity to analyze these

dynamics as they adhere to individual samples from the training data set. As long as these

samples have some kind of common group labelling, we can thus do statistical compar-

isons of gradient trajectories between groups without breaking normal training behavior.

This further allows our method to stand out from post-hoc methods which not only oc-

cur outside of training, but can only be evaluated for between different classes in disjoint
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contexts.

6.2 Methods

In this section, we provide an overview of the methods at work in AutoSpec. First, we pro-

vide a brier review of how the gradient of the weights is computed within auto-differentiation,

recall how the spectrum is bounded by particular architectural decisions, and show how the

spectrum of the gradient relates to the spectrum of the input activations and adjoint vari-

ables accumulated within auto-differentiation. We then describe how auto-differentiation

uniquely allows us to analyze dynamics between particular groups of samples.

6.2.1 Gradient Spectra via Auto-Differentiation

Recall from chapters 4 and 5 that during reverse-mode auto-differentiation, the gradient of

the weights at a given layer i is computed as a product of the input activations A and the

adjoint variable ≩ which is the partial derivative computed on the output neurons during

back-propagation. Formally, if we have weights Wi ∈ Rhi−1×hi where hi−1 and hi are the

number of input and output neurons respectively. Formally, we write this as:

∇Wi
= A⊤

i−1∆i (6.1)

where A ∈ RN×hi−1 and ≩ ∈ RN×hi are the input activations and adjoint variables

with batch size N . See chapters 5 and 6 for a further review of how these variables are all

computed. The Singular Value Decompositions of ∇Wi
, Ai−1 and ∆i can be written as:

∇Wi
= U∇i

Σ∇i
V⊤

∇i
, Ai−1 = UAi−1

ΣAi−1
V⊤

Ai−1
, ∆i = U∆i

Σ∆i
V⊤

∆i
(6.2)

We can then write ∇Wi
as a product of the SVDs of Ai−1 and ∆i, and use the fact that

the U matrices are orthogonal to get:
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∇Wi
= VAi−1

ΣAi−1
UAi−1

U⊤
∆i
Σ∆i

V⊤
∆i

(6.3)

= VAi−1
ΣAi−1

Σ∆i
V⊤

∆i
(6.4)

Thus, we can see that the singular values of ∇Wi
are just the singular values of the first

min(hi−1, h) singular values from the input activations and adjoint variable.

For the sake of analysis, we can compute the SVD of all three statistics-of-interest just

by computing the SVD and the input activations and adjoint matrices; however, because the

batch size N might be large, if the gradient is the only statistic of interest, it would often

be more efficient to compute the SVD of ∇Wi
directly.

For networks which utilize parameter tying, such as Convolutional or Recurrent Neural

Networks, the gradients are often accumulated over time and space. If desired, our unique

perspective from within Auto-Differentiation allows us to peek further into these dimen-

sions, characterizing the spectra not only of the gradient of the weights, but of the gradient

of the weights over the dimension of tying.

6.2.2 Identifying Group Differences

One of the advantages of computing our introspection statistics within auto-differentiation

is that we have access to the individual gradients for each input sample to the model. Thus,

we can evaluate how particular groups of samples individually contribute to the aggregated

gradients prior to the aggregated gradient. Formally, if we have C distinct groups of sam-

ples in our training set, we can compute the set of C gradients and their SVD as

{∇c = UcΣcV
⊤
c }Cc=1 (6.5)

we can then perform statistical testing by accumulating these group-specific statistics
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during training, and evaluating the differences between groups. For example, if we per-

form a two-tailed T-test, we can obtain a measure of which training steps were significant

between groups if we treat the number of singular values as features. Additionally, we

can obtain a measure of per-singular-value significance by taking the T-tests between the

transpose.

6.2.3 Data sets and Experimental Design

To demonstrate the kinds of dynamics which AutoSpec can reveal, we have organized a

battery of experiments across different data modalities and architecture types.

First, we use two numerical data sets to show how AutoSpec allows for dynanic intro-

spection on Multi-Layer Perceptrons, Elman Cell RNNs, and 2-D CNNs. Our choice of

numerical data sets are the MNIST and Sinusoid data sets which have presented previously

in chapter 5.

We then move from numerical data to an application in Neuroimaging analysis. We first

apply a Multi-Layer perceptron on the FreeSurfer volumes we utilized in chapter 4, and

then move to analyzing functional MRI from the COBRE data set [237], which is a well-

studied data set especially for applications of deep learning [238, 239, 240, 241]. For our

demonstration, we perform Spatially Constrained Independent Component Analysis using

the NeuroMark template [242], which provides us with 53 neurologically relevant spatially

independent maps and associated time-series. Using the time-series data, we demonstrate

how AutoSpec can reveal group-specific gradient dynamics in 1D and 2D CNNs, LSTMs

and the BERT transformer [243]. We then utiliez the spatial maps (aggregated over the

number of components by taking the maximum over the voxel dimension) to demonstrate

group-specific gradient dynamics in 3D-CNNs.

For all architectures and all data sets, we evaluate a few different scenarios demonstrat-

ing the diversity of dynamics available in gradient spectra. For all models and datasets, we

perform two tasks: classification and auto-encoding; however, we only demonstrate one
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model instance and group differences for the auto-encoding task for clarity. Additionally,

we evaluate “wide/shallow” (1 layer with 128 neurons) and “deep/thin” (3 layers with 8

neurons) variants of each model. We finally compare how a different choice of activation

function can affect dynamics by evaluating each model with Sigmoid and Tanh activations

in constrast to ReLU activations which we use elsewhere. For all analyses, we perform

two-tailed T-Tests between each pair of classes in a given data set to demonstrate where

significant group differences emerge within a particular scenario. Group comparisons for

all architectural variants are included in supplementary material.

A detailed outline of our experimental is included in 6.1 and 6.2. When not otherwise

specified, we use ReLU activations in all models, a learning rate of 1 × 10−3, and 1000

epochs of training. Where possible, we perform full-batch training rather than SGD, as the

batch size can artificially restrict the rank of the gradient as we explored in chapter 5. For

the sake of this demonstration, we set all models to use the same seed, and we only evaluate

the models in a one-shot training scenario.

6.3 Results

In this section, we present the empirical results demonstrating how AutoSpec can be used

to reveal group gradient dynamics in deep neural networks. All of our figures follow the

same format as follows: panels A and B compare the dynamics between a model trained for

sample reconstruction (panel A) and for classification (panel B); panels C and D compare

dynamics between tanh (panel C) and relu (panel D) activations, panels E and F compare

dynamics between “thin” (panel E) and “wide” (panel F) variants of the base network with

8 and 64 neurons respectively. For a review of how each experiment is organized into

panels see table 6.1.

The experiments on the MNIST data set are included in 6.1 and 6.2 for the MLP and

2DCNN architectures respectively. The experiments for the sinusoid data set evaluated

with an RNN can be found in 6.3. The MLP applied to FSL data can be found in 6.4.
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Table 6.1

Panel Task Model Dims Activation
A Auto-Encoding [32] ReLU
B Classification [32] ReLU
C Auto-Encoding [32] Tanh
D Auto-Encoding [32] Sigmoid
E Auto-Encoding [8] ReLU
F Auto-Encoding [64] ReLU
G Auto-Encoding (Group Differences) [32] ReLU
H Classification (Group Differences) [32] ReLU

Table 6.2

Dataset Modality Model Figure
MNIST Image MLP 6.1
MNIST Image 2DCNN 6.2

SINUSOID Time-Series RNN 6.3
FreeSurfer Tabular MLP 6.4
COBRE ICA Time-Series LSTM 6.5
COBRE ICA Time-Series BERT 6.6
COBRE ICA Time-Series 1D-CNN 6.7
COBRE ICA Spatial Mapps 3D-CNN 6.8

The experiments on COBRE ICA time-series can be found in figures 6.5, 6.6 and 6.7 for

the LSTM, BERT, and 1D-CNN architectures respectively. Finally, the experiments on

COBRE ICA spatial maps can be found in figure 6.8. See table 6.2 for a review of which

data set and architecture combinations can be found in particular figures.

6.4 Discussion

In this chapter, we have introduced a new method for model introspection called AutoSpec,

in which we utilize the singular value decomposition to study the dynamic evolution of

the spectrum of the gradient and its component matrices. Our method reveals fascinating

dynamics at work in a number of model architectures, and also allows us to identify unique

dynamics belonging to particular groups within a data set. We demonstrated our model

on numerical datasets for sequence and image reconstruction and classification, and also
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demonstrated the identification of group differences on a real neuroimaging data set.

We will provide a brief discussion of some of the observed differences in dynamics;

however, we would like to stipulate that any general conclusions regarding these dynam-

ics will require further experimentation testing specific architecture choices systematically

over many repetitions, seeds, and data sets. First of all we notice that for all data sets

and architectures, the dynamics we find with AutoSpec show very different trajectories be-

tween and AutoEncoding and Classification task (see 6.1a and 6.1b for the MLP applied

to MNIST for example). Particularly the input layers across all cases are affected by the

change in the output structure, and corresponding singular values in output layers are also

different between the two tasks. The choice of activation function can affect the gradi-

ent spectrum as well - we notice for example when we compare the Sigmoid and Tanh

activated LSTM (6.5) and 1D CNN (6.7), we can see slight differences in the trajectory

toward the start of training, but the overall evolution stays the same. In the 2D (6.2) and

3D (6.8) CNNs, however, we notice that Sigmoid and Tanh activations affect the spectrum

quite differently, with the effects in the 3D CNN particularly noticeable early in the training

period. The dynamics in the layers pulled from the BERT architecture (6.6) are difficult

to interpret as singular values tend to jump drastically between individual epochs, perhaps

indicated; however, even in this noisy scenario, the BERT architecture reflects a general

trend of shrinking singular values which occurs in other architures during training.

In each of our analyses, we also compute group differences between the observed dy-

namics. In general, smaller observed singular values tend to change more drastically; how-

ever, because the values are so small and near the threshold for machine epsilon of floating

point numbers, it is unclear if any observed differences are merely the result of noise. We

do see larger singular values show significant differences during training across a few dif-

ferent architectures however, and interestingly, these differences are often contained with

a few layers. For example, the MLP autoencoder trained on FSL data shows significant

differences between SZ and HC groups in the middle singular values of the output layer
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(see 6.4g), while the corresponding classifier shows more group differences in the input

layer (see 6.4h). The LSTM, BERT and 1D CNN models all show significant differences

between male SZ and HC groups, with the LSTM showing differences mostly the Hidden-

to-Hidden gradients (see 6.5g and 6.5h), the 1D CNN showing significant differences at the

output layer (see 6.7g and 6.7h), and BERT showing differences across the entire model

for the autoencoder task (see 6.6g) with almost no significant differences in the classifier

((see 6.6h). While more work is needed to investigate what these differences mean for how

the model treats different sample groups differently, our finding of significant effects across

multiple tasks and architectures demonstrates that these kinds of dynamics may be useful

for further, targeted investigation.

The major limitation of our AutoSpec framework is the computational overhead re-

quired for computing the singular values on-the-fly during training. In general for a matrix

A ∈ Rm×n, the complexity required for computing the SVD is O(min(mn2,m2n)). If we

want to analyze L different layers at T different training periods, the complexity of our

method further increases to O(LT min(mn2,m2n)). Even more overhead is accumulated

if we perform group-specific analyses. As such, AutoSpec in practical usage will require

long runtimes during training to perform a comprehensive analysis; however, limiting the

analysis to specific singular values, layers, periods during training, or groups would reduce

this overhead. One potential direction of future work could derive an analytic update to the

gradient spectrum based on the initial SVD of the weights and input data, and thus avoid

recomputing the SVD entirely for each update.

The computational overhead has limited our experiments in this work to smaller archi-

tectures, or variants of large architectures with smaller dimension sizes. In future work,

we would like to expand the analysis to one or two larger scale architectures to provide

principled insights into the dynamics of these models; however, for the sake of surveying

many model types in this work we have kept the scope smaller for scalability.
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Figure 6.1: Differences in Auto-Differentiation Spectra Dynamics for the first 4 classes
in the MNIST data set, trained with various architectures and tasks with a Multi-Layer
Perceptron.

(a) MLP Autoencoder with hidden dim 32 and ReLU activations

(b) MLP Classifier with hidden dim 32 and ReLU activations
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(c) MLP Autoencoder with hidden dim 32 and Sigmoid activations

(d) MLP Autoencoder with hidden dim 32 and Tanh activations
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(e) MLP Autoencoder with hidden dim 8 and ReLU activations

(f) MLP Autoencoder with hidden dim 64 and ReLU activations
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(g) Significant spectral differences between groups 0 and 3: MLP Autoencoder with hidden dim 32
and ReLU activations

(h) Significant spectral differences between groups 0 and 3: MLP Classifier with hidden dim 32 and
ReLU activations

Figure 6.1: Differences in Auto-Differentiation Spectra Dynamics for the first 4 classes
in the MNIST data set, trained with various architectures and tasks with a Multi-Layer
Perceptron.
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Figure 6.2: Differences in Auto-Differentiation Spectra Dynamics for the first 4 classes in
the MNIST data set, trained with various architectures and tasks with a 2D CNN.

(a) CNN2D Autoencoder with hidden dim 8 and ReLU activations
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(b) CNN2D Classifier with hidden dim 8 and ReLU activations
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(c) CNN2D Autoencoder with hidden dim 8 and Sigmoid activations
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(d) CNN2D Autoencoder with hidden dim 8 and Tanh activations
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(e) CNN2D Classifier with hidden dim 8 and Sigmoid activations
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(f) CNN2D Classifier with hidden dim 8 and Tanh activations
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(g) Significant spectral differences between groups 0 and 3: CNN2D Autoencoder with hidden dim
8 and ReLU activations

(h) Significant spectral differences between groups 0 and 3: CNN2D Classifier with hidden dim 8
and ReLU activations

Figure 6.2: Differences in Auto-Differentiation Spectra Dynamics for the first 4 classes in
the MNIST data set, trained with various architectures and tasks with a 2D CNN.
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Figure 6.3: Differences in Auto-Differentiation Spectra Dynamics for the first 4 classes in
the Sinusoid data set, trained with various architectures and tasks with an RNN

(a) RNN Autoencoder with hidden dim 32 and ReLU activations
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(b) RNN Classifier with hidden dim 32 and ReLU activations
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(c) RNN Autoencoder with hidden dim 32 and Sigmoid activations
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(d) RNN Autoencoder with hidden dim 32 and Tanh activations
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(e) RNN Autoencoder with hidden dim 8 and ReLU activations
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(f) RNN Autoencoder with hidden dim 64 and ReLU activations
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(g) Significant spectral differences between groups 0 and 3: RNN Autoencoder with hidden dim 32
and ReLU activations

(h) Significant spectral differences between groups 0 and 3: RNN Classifier with hidden dim 32 and
ReLU activations

Figure 6.3: Differences in Auto-Differentiation Spectra Dynamics for the first 4 classes in
the Sinusoid data set, trained with various architectures and tasks with an RNN
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Figure 6.4: Differences in Auto-Differentiation Spectra Dynamics on the FSL data set,
trained with various architectures and tasks with a Multi-Layer Perceptron.

(a) MLP Autoencoder with hidden dim 32 and ReLU activations
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(b) MLP Classifier with hidden dim 32 and ReLU activations
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(c) MLP Autoencoder with hidden dim 32 and Sigmoid activations
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(d) MLP Autoencoder with hidden dim 32 and Tanh activations
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(e) MLP Autoencoder with hidden dim 8 and ReLU activations
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(f) MLP Autoencoder with hidden dim 64 and ReLU activations
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(g) Significant spectral differences between groups SZ and HC: MLP Autoencoder with hidden dim
32 and ReLU activations

(h) Significant spectral differences between groups SZ and HC: MLP Classifier with hidden dim 32
and ReLU activations

Figure 6.4: Differences in Auto-Differentiation Spectra Dynamics on the FSL data set,
trained with various architectures and tasks with a Multi-Layer Perceptron.
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Figure 6.5: Differences in Auto-Differentiation Spectra Dynamics on the COBRE data set,
trained with various architectures and tasks with an LSTM.

(a) LSTM Autoencoder with hidden dim 32 and ReLU activations
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(b) LSTM Classifier with hidden dim 32 and ReLU activations

160



(c) LSTM Autoencoder with hidden dim 32 and Sigmoid activations
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(d) LSTM Autoencoder with hidden dim 32 and Tanh activations

162



(e) LSTM Autoencoder with hidden dim 8 and ReLU activations
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(f) LSTM Autoencoder with hidden dim 64 and ReLU activations
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(g) Significant spectral differences between HC, SZ and Sex: LSTM Autoencoder with hidden dim
32 and ReLU activations

(h) Significant spectral differences between HC, SZ and Sex: LSTM Classifier with hidden dim 32
and ReLU activations

Figure 6.5: Differences in Auto-Differentiation Spectra Dynamics on the COBRE data set,
trained with various architectures and tasks with an LSTM.
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Figure 6.6: Differences in Auto-Differentiation Spectra Dynamics on the COBRE data set,
trained with various architectures and tasks with a BERT Transformer.

(a) BERT Autoencoder with hidden dim 32 and ReLU activations
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(b) BERT Classifier with hidden dim 32 and ReLU activations
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(c) BERT Autoencoder with hidden dim 32 and Sigmoid activations
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(d) BERT Autoencoder with hidden dim 32 and Tanh activations
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(e) BERT Autoencoder with hidden dim 8 and ReLU activations
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(f) BERT Autoencoder with hidden dim 64 and ReLU activations
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(g) Significant spectral differences between HC, SZ and Sex: BERT Autoencoder with hidden dim
32 and ReLU activations

(h) Significant spectral differences between HC, SZ and Sex: BERT Classifier with hidden dim 32
and ReLU activations

Figure 6.6: Differences in Auto-Differentiation Spectra Dynamics on the COBRE data set,
trained with various architectures and tasks with a BERT Transformer.
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Figure 6.7: Differences in Auto-Differentiation Spectra Dynamics on the COBRE data set,
trained with various architectures and tasks with a 1D CNN.

(a) CNN1D Autoencoder with hidden dim 32 and ReLU activations
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(b) CNN1D Classifier with hidden dim 32 and ReLU activations
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(c) CNN1D Autoencoder with hidden dim 32 and Sigmoid activations
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(d) CNN1D Autoencoder with hidden dim 32 and Tanh activations
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(e) CNN1D Autoencoder with hidden dim 8 and ReLU activations
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(f) CNN1D Autoencoder with hidden dim 64 and ReLU activations
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(g) Significant spectral differences between HC, SZ and Sex: CNN1D Autoencoder with hidden
dim 32 and ReLU activations

(h) Significant spectral differences between HC, SZ and Sex: CNN1D Classifier with hidden dim
32 and ReLU activations

Figure 6.7: Differences in Auto-Differentiation Spectra Dynamics on the COBRE data set,
trained with various architectures and tasks with a 1D CNN.
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Figure 6.8: Differences in Auto-Differentiation Spectra Dynamics on the COBRE data set,
trained with various architectures and tasks with a 3D CNN.

(a) CNN3D Autoencoder with hidden dim 32 and ReLU activations
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(b) CNN3D Classifier with hidden dim 32 and ReLU activations
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(c) CNN3D Autoencoder with hidden dim 32 and Sigmoid activations
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(d) CNN3D Autoencoder with hidden dim 32 and Tanh activations
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(e) CNN3D Autoencoder with hidden dim 8 and ReLU activations
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(f) CNN3D Autoencoder with hidden dim 64 and ReLU activations
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(g) Significant spectral differences between HC, SZ and Sex: CNN3D Autoencoder with hidden
dim 32 and ReLU activations

(h) Significant spectral differences between HC, SZ and Sex: CNN3D Classifier with hidden dim
32 and ReLU activations

Figure 6.8: Differences in Auto-Differentiation Spectra Dynamics on the COBRE data set,
trained with various architectures and tasks with a 3D CNN.
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CHAPTER 7

CONCLUSION

In this dissertation, we have followed the concept of low-rank decompositions from the

creation of efficient and intuitive distributed learning algorithms to the formulation of

novel insights regarding the nature of how models learn. The distributed learning algo-

rithms in chapters 2, 3 and 4 demonstrate how low-rank decompositions can provide novel,

data-driven insights in settings where communication efficienc and privacy are paramount.

Chapters 5 and 6 then build on the notion of low-rank learning to peer into how models

learn themselves, allowing us to provide constraints on learning dynamics and provide new

tools for showing how different model architectures behave differently are affected by sam-

ples belonging to different groups. The insights in chapters 5 and 6 feed back into the work

on distributed learning by providing guidelines for how far the communication and privacy

benefits of low-rank learning can go; however, there are implications for general learning

theory beyond the distributed setting as well.

There are many, promising future directions for the work contained here, and many of

them have been discussed already in individual chapters. One particularly interesting fu-

ture direction for the theoretical work in chapter 5 aims to extend the analysis of nonlinear

activations beyond piecewise linear functions to general nonlinear functions. While the

machinery of linear algebra and the singular value decomposition in particular break down

when introducing such functions, initial empirical findings indicate a rich phenomenon

which will either require leveraging theory from the analysis of nonlinear functions in

branches pure mathematics, or otherwise inventing new analysis techniques which can ac-

count for the observed behavior.

Formally, if we have a low-rank matrix A ∈ Rm×n which has rank k < min(m,n),

we compute its singular value decomposition as A = UAΣAV
⊤
A . If we apply a nonlinear
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activation φ(A) and then compute the SVD of the resulting matrix as φ(A) = UφΣφV
⊤
φ ,

we want to describe a connection between the singular values (or an analogous metric) in

ΣA and Σφ.

In 7.1 we demonstrate how the application of different nonlinear activation functions

can affect the magnitude of the singular values following nonlinear activation. To generate

this plot, we first constructed a matrix A ∈ R4×4, computed the SVD, and then removed

the two smallest singular values to make it rank two. We then control the magnitude of the

remaining singular values of A, and show how they affect the magnitude of the 4 singular

values of the resulting nonlinear activation φ(A). Although we see a consistent increase

in the magnitude of nonlinear-activation singular values as the underlying linear singular

values increase, the behavior is not a simple linear increase. For example, sigmoid and

relu activations seem to actually supress the magnitude of the dominant singular value.

Tanh activations seem to nearly reproduce the effect of linear activations on the top two

dominant singular values; however, they also introduce increases in the magnitude of the

lower singular values, especially when the original linear values are large. We can see from

the observations in figure 7.1 that there is a rich underlying phenomenon at work here, and

it very much seems to depend on the choice of nonlinear activation function.

If we are able to extend the analysis in chapter 5 to general nonlinear functions, there is

another promising line of work in which we can analytically determine the updates to the

singular values of the gradient (and perhaps the weights) without computing the full SVD at

each training iteration. This would in and of itself be a fascinating theoretical result; how-

ever, it would also allow for the AutoSpec method to be performed more efficiently during

runtime, instead of requiring the overhead of a full SVD computation for each computed

gradient.

All of the methods included in this work either already are or are in the process of being

made available in public software for neuroimaging and general machine learning applica-

tions. The methods in chapters 2, 3, and 4 are already integrated into the COINSTAC [44]

188



distributed neuroimaging toolbox, and the theoretical results in chapter 5 are being used

to improve the communication efficiency of distributed deep learning algorithms in COIN-

STAC as well. The AutoSpec method is planned to be integrated as part of a comprehensive

deep learning introspection toolbox for deep learning, and also perhaps as a contribution to

the captum introspection library in pytorch.

There is still much to be garnered in machine learning from the study of low-rank

algorithms and analysis. This work has presented innovations in distributed learning which

led to studies in the very underlying learning itself. As the world of machine learning grows

ever more complex, there are still many useful algorithms and profound theoretical insights

laying in low in lower-dimensional spaces.
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Figure 7.1: The effect of different nonlinear activation functions on the top 4 singular values
of a rank 2 matrix, as a function of the top two singular values of the underlying matrix. In
each plot, the vertical axis is the intensity of the largest singular value, and the horizontal
axis is the intensity of the second largest singular value.
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This list contains publications listing the author for reference. Publications which were

partially utilized for dissertation chapters are included in bold.

1. Baker, Bradley T., et al. “Large scale collaboration with autonomy: Decentralized data ICA.”

2015 IEEE 25th international workshop on machine learning for signal processing (MLSP).

IEEE, 2015.
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